Transient and steady state of a rising bubble in a viscoelastic fluid

2007 ◽  
Vol 589 ◽  
pp. 215-252 ◽  
Author(s):  
SHRIRAM B. PILLAPAKKAM ◽  
PUSHPENDRA SINGH ◽  
DENIS BLACKMORE ◽  
NADINE AUBRY

A finite element code based on the level-set method is used to perform direct numerical simulations (DNS) of the transient and steady-state motion of bubbles rising in a viscoelastic liquid modelled by the Oldroyd-B constitutive equation. The role of the governing dimensionless parameters, the capillary number (Ca), the Deborah number (De) and the polymer concentration parameter c, in both the rising speed and the deformation of the bubbles is studied. Simulations show that there exists a critical bubble volume at which there is a sharp increase in the terminal velocity with increasing bubble volume, similar to the behaviour observed in experiments, and that the shape of both the bubble and its wake structure changes fundamentally at that critical volume value. The bubbles with volumes smaller than the critical volume are prolate shaped while those with volumes larger than the critical volume have cusp-like trailing ends. In the latter situation, we show that there is a net force in the upward direction because the surface tension no longer integrates to zero. In addition, the structure of the wake of a bubble with a volume smaller than the critical volume is similar to that of a bubble rising in a Newtonian fluid, whereas the wake structure of a bubble with a volume larger than the critical value is strikingly different. Specifically, in addition to the vortex ring located at the equator of the bubble similar to the one present for a Newtonian fluid, a vortex ring is also present in the wake of a larger bubble, with a circulation of opposite sign, thus corresponding to the formation of a negative wake. This not only coincides with the appearance of a cusp-like trailing end of the rising bubble but also propels the bubble, the direction of the fluid velocity behind the bubble being in the opposite direction to that of the bubble. These DNS results are in agreement with experiments.

2006 ◽  
Author(s):  
Shriram Pillapakkam ◽  
Pushpendra Singh ◽  
Denis L. Blackmore ◽  
Nadine Aubry

A finite element code based on the level set method is developed for performing two and three dimensional direct numerical simulations (DNS) of viscoelastic two-phase flow problems. The Oldroyd-B constitutive equation is used to model the viscoelastic liquid and both transient and steady state shapes of bubbles in viscoelastic buoyancy driven flows are studied. The influence of the governing dimensionless parameters, namely the Capillary number (Ca), the Deborah Number (De) and the polymer concentration parameter c, on the deformation of the bubble is also analyzed. Our simulations demonstrate that the rise velocity oscillates before reaching a steady value. The shape of the bubble, the magnitude of velocity overshoot and the amount of damping depend mainly on the parameter c and the bubble radius. Simulations also show that there is a critical bubble volume at which there is a sharp increase in the bubble terminal velocity as the increasing bubble volume increases, similar to the behavior observed in experiments. The structure of the wake of a bubble rising in a Newtonian fluid is strikingly different from that of a bubble rising in a viscoelastic fluid. In addition to the two recirculation zones at the equator of the bubble rising in a Newtonian fluid, two more recirculation zones exist in the wake of a bubble rising in viscoelastic fluids which influence the shape of a rising bubble. Interestingly, the direction of motion of the fluid a short distance below the trailing edge of a bubble rising in a viscoelastic fluid is in the opposite direction to the direction of the motion of the bubble, thus creating a “negative wake”. In this paper, the velocity field in the wake of the bubble, the effect of the parameters on the velocity field and their influence on the shape of the bubble are also investigated.


2019 ◽  
Vol 39 (2) ◽  
pp. 262-271
Author(s):  
Yukan Hou ◽  
Yuan Li ◽  
Yuntian Ge ◽  
Jie Zhang ◽  
Shoushan Jiang

Purpose The purpose of this paper is to present an analytical method for throughput analysis of assembly systems with complex structures during transients. Design/methodology/approach Among the existing studies on the performance evaluation of assembly systems, most focus on the system performance in steady state. Inspired by the transient analysis of serial production lines, the state transition matrix is derived considering the characteristics of merging structure in assembly systems. The system behavior during transients is described by an ergodic Markov chain, with the states being the occupancy of all buffers. The dynamic model for the throughput analysis is solved using the fixed-point theory. Findings This method can be used to predict and evaluate the throughput performance of assembly systems in both transient and steady state. By comparing the model calculation results with the simulation results, this method is proved to be accurate. Originality/value This proposed modeling method can depict the throughput performance of assembly systems in both transient and steady state, whereas most exiting methods can be used for only steady-state analysis. In addition, this method shows the potential for the analysis of complex structured assembly systems owing to the low computational complexity.


Author(s):  
Vincent O. S. Olunloyo ◽  
Charles A. Osheku ◽  
Sidikat I. Kuye

Internal fluid flow parameters in conjunction with elastomechanical properties of conveyance systems have significantly modulated flow induced vibrations in pipeline and riser systems. Recent advances on the mechanics of sandwich elastic systems as effective vibration and noise reduction mechanisms have simulated the possibility of replacing traditional steel pipes with sandwich pipes in deepwater environment. The dynamic behaviour and stability of sandwich elastic pipes conveying a non-Newtonian fluid are investigated in this paper. For this problem, a set of generalised non-linear equations governing the vibration of sandwich pipes held together in pressurised environment and conveying a non-Newtonian fluid is presented. By linearizing the governing partial differential equation matching the problem physics, under slight perturbation of the internal fluid velocity and other flow variables closed form analytical results for the system dual natural frequencies and stability under external excitation are computed for field designs and applications. Results show that for a given length of pipe, beyond the critical velocity, instability increases with the velocity of conveyance.


2000 ◽  
Vol 27 (9) ◽  
pp. 1359-1362 ◽  
Author(s):  
Alan S. Rodger ◽  
Iain J. Coleman ◽  
Mike Pinnock

1994 ◽  
Vol 49 (15) ◽  
pp. 10572-10576 ◽  
Author(s):  
C. H. Lee ◽  
G. Yu ◽  
B. Kraabel ◽  
D. Moses ◽  
V. I. Srdanov

Sign in / Sign up

Export Citation Format

Share Document