scholarly journals On the stability of plane Couette–Poiseuille flow with uniform crossflow

2010 ◽  
Vol 656 ◽  
pp. 417-447 ◽  
Author(s):  
ANIRBAN GUHA ◽  
IAN A. FRIGAARD

We present a detailed study of the linear stability of the plane Couette–Poiseuille flow in the presence of a crossflow. The base flow is characterized by the crossflow Reynolds number Rinj and the dimensionless wall velocity k. Squire's transformation may be applied to the linear stability equations and we therefore consider two-dimensional (spanwise-independent) perturbations. Corresponding to each dimensionless wall velocity, k ∈ [0, 1], two ranges of Rinj exist where unconditional stability is observed. In the lower range of Rinj, for modest k we have a stabilization of long wavelengths leading to a cutoff Rinj. This lower cutoff results from skewing of the velocity profile away from a Poiseuille profile, shifting of the critical layers and the gradual decrease of energy production. Crossflow stabilization and Couette stabilization appear to act via very similar mechanisms in this range, leading to the potential for a robust compensatory design of flow stabilization using either mechanism. As Rinj is increased, we see first destabilization and then stabilization at very large Rinj. The instability is again a long-wavelength mechanism. An analysis of the eigenspectrum suggests the cause of instability is due to resonant interactions of Tollmien–Schlichting waves. A linear energy analysis reveals that in this range the Reynolds stress becomes amplified, the critical layer is irrelevant and viscous dissipation is completely dominated by the energy production/negation, which approximately balances at criticality. The stabilization at very large Rinj appears to be due to decay in energy production, which diminishes like Rinj−1. Our study is limited to two-dimensional, spanwise-independent perturbations.

2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


Author(s):  
Anirban Guha ◽  
Ian A. Frigaard

We have investigated the linear stability of plane Couette-Poiseuille flow in the presence of a cross-flow. The base flow is characterised by the cross flow Reynolds number, Ri and the dimensionless wall velocity, k. Corresponding to each k ∈ [0,1], we have observed two ranges of Ri for which the flow is unconditionally linearly stable. In the lower range, we have a stabilisation of long wavelengths leading to a cut-off Ri. In this range, cross-flow stabilisation and Couette stabilisation appear to act via very similar mechanisms in this range, leading to the potential for robust compensatory design of flow stabilisation using either mechanism. As Ri is increased, we see first destabilisation and then stabilisation at very large Ri. The instability is again a long wavelength mechanism. A linear energy analysis reveals that in this range the Reynolds stress becomes amplified, the critical layer is irrelevant and viscous dissipation is completely dominated by the energy production/negation, which approximately balances at criticality.


1968 ◽  
Vol 33 (1) ◽  
pp. 21-32 ◽  
Author(s):  
K. S. Gage ◽  
W. H. Reid

In studying the stability of a thermally stratified fluid in the presence of a viscous shear flow, we have a situation in which there is an important interaction between the mechanism of instability due to the stratification and the Tollmien-Schlichting mechanism due to the shear. A complete analysis has been carried out for the Bénard problem in the presence of a plane Poiseuille flow and it is shown that, although Squire's transformation can be used to reduce the three-dimensional problem to an equivalent two-dimensional one, a theorem of Squire's type does not follow unless the Richardson number exceeds a certain small negative value. This conclusion follows from the fact that, when the stratification is unstable and the Prandtl number is unity, the equivalent two-dimensional problem becomes identical mathematically to the stability problem for spiral flow between rotating cylinders and, from the known results for the spiral flow problem, Squire's transformation can then be used to obtain the complete three-dimensional stability boundary. For the case of stable stratification, however, Squire's theorem is valid and the instability is of the usual Tollmien—Schlichting type. Additional calculations have been made for this case which show that the flow is completely stabilized when the Richardson number exceeds a certain positive value.


2021 ◽  
Vol 927 ◽  
Author(s):  
J.S. Kern ◽  
M. Beneitez ◽  
A. Hanifi ◽  
D.S. Henningson

Time-dependent flows are notoriously challenging for classical linear stability analysis. Most progress in understanding the linear stability of these flows has been made for time-periodic flows via Floquet theory focusing on time-asymptotic stability. However, little attention has been given to the transient intracyclic linear stability of periodic flows since no general tools exist for its analysis. In this work, we explore the potential of using the recent framework of the optimally time-dependent (OTD) modes (Babaee & Sapsis, Proc. R. Soc. Lond. A, vol. 472, 2016, 20150779) to extract information about both the transient and the time-asymptotic linear stability of pulsating Poiseuille flow. The analysis of the instantaneous OTD modes in the limit cycle leads to the identification of the dominant instability mechanism of pulsating Poiseuille flow by comparing them with the spectrum and the eigenmodes of the Orr–Sommerfeld operator. In accordance with evidence from recent direct numerical simulations, it is found that structures akin to Tollmien–Schlichting waves are the dominant feature over a large range of pulsation amplitudes and frequencies but that for low pulsation frequencies these modes disappear during the damping phase of the pulsation cycle as the pulsation amplitude is increased beyond a threshold value. The maximum achievable non-normal growth rate during the limit cycle was found to be nearly identical to that in plane Poiseuille flow. The existence of subharmonic perturbation cycles compared with the base flow pulsation is documented for the first time in pulsating Poiseuille flow.


2014 ◽  
Vol 761 ◽  
pp. 62-104 ◽  
Author(s):  
Joris C. G. Verschaeve ◽  
Geir K. Pedersen

AbstractIn the present treatise, the stability of the boundary layer under solitary waves is analysed by means of the parabolized stability equation. We investigate both surface solitary waves and internal solitary waves. The main result is that the stability of the flow is not of parametric nature as has been assumed in the literature so far. Not only does linear stability analysis highlight this misunderstanding, it also gives an explanation why Sumer et al. (J. Fluid Mech., vol. 646, 2010, pp. 207–231), Vittori & Blondeaux (Coastal Engng, vol. 58, 2011, pp. 206–213) and Ozdemir et al. (J. Fluid Mech., vol. 731, 2013, pp. 545–578) each obtained different critical Reynolds numbers in their experiments and simulations. We find that linear instability is possible in the acceleration region of the flow, leading to the question of how this relates to the observation of transition in the acceleration region in the experiments by Sumer et al. or to the conjecture of a nonlinear instability mechanism in this region by Ozdemir et al. The key concept for assessment of instabilities is the integrated amplification which has not been employed for this kind of flow before. In addition, the present analysis is not based on a uniformization of the flow but instead uses a fully nonlinear description including non-parallel effects, weakly or fully. This allows for an analysis of the sensitivity with respect to these effects. Thanks to this thorough analysis, quantitative agreement between model results and direct numerical simulation has been obtained for the problem in question. The use of a high-order accurate Navier–Stokes solver is primordial in order to obtain agreement for the accumulated amplifications of the Tollmien–Schlichting waves as revealed in this analysis. An elaborate discussion on the effects of amplitudes and water depths on the stability of the flow is presented.


2019 ◽  
Vol 865 ◽  
Author(s):  
Cheng-Nian Xiao ◽  
Inanc Senocak

We investigate the stability of the Prandtl model for katabatic slope flows using both linear stability theory and direct numerical simulations. Starting from Prandtl’s analytical solution for uniformly cooled laminar slope flows, we use linear stability theory to identify the onset of instability and features of the most unstable modes. Our results show that the Prandtl model for parallel katabatic slope flows is prone to transverse and longitudinal modes of instability. The transverse mode of instability manifests itself as stationary vortical flow structures aligned in the along-slope direction, whereas the longitudinal mode of instability emerges as waves propagating in the base-flow direction. Beyond the stability limits, these two modes of instability coexist and form a complex flow structure crisscrossing the plane of flow. The emergence of a particular form of these instabilities depends strongly on three dimensionless parameters, which are the slope angle, the Prandtl number and a newly introduced stratification perturbation parameter, which is proportional to the relative importance of the disturbance to the background stratification due to the imposed surface buoyancy flux. We demonstrate that when this parameter is sufficiently large, then the stabilising effect of the background stratification can be overcome. For shallow slopes, the transverse mode of instability emerges despite meeting the Miles–Howard stability criterion of $Ri>0.25$. At steep slope angles, slope flow can remain linearly stable despite attaining Richardson numbers as low as $3\times 10^{-3}$.


1977 ◽  
Vol 28 (4) ◽  
pp. 247-258 ◽  
Author(s):  
Yutaka Tsuji ◽  
Yoshinobu Morikawa ◽  
Masaaki Sakou

SummaryMeasured stability characteristics in a radial wall jet were compared with calculated results for a two-dimensional wall jet. It was found that the stability of the radial wall jet is similar in many respects to that of the two-dimensional wall jet. An exception is that the local amplification rate of the disturbance velocity is much higher than in the two-dimensional case. It was also found that quarter-harmonics appear in the non-linear region, as well as half-harmonics, and that their amplitude distributions show profiles similar to that of the fundamental component. Further, vortex patterns were visualised in water flow, and results corresponding to measurements in air flow and to the linear stability calculation were obtained.


1994 ◽  
Vol 263 ◽  
pp. 133-150 ◽  
Author(s):  
I. A. Frigaard ◽  
S. D. Howison ◽  
I. J. Sobey

The stability to linearized two-dimensional disturbances of plane Poiseuille flow of a Bingham fluid is considered. Bingham fluids exhibit a yield stress in addition to a plastic viscosity and this description is typically applied to drilling muds. A non-zero yield stress results in an additional parameter, a Bingham number, and it is found that the minimum Reynolds number for linear instability increases almost linearly with increasing Bingham number.


Author(s):  
Lei Xu ◽  
Zvi Rusak

Abstract The linear stability of plane Poiseuille flow through a finite-length channel is studied. A weakly-divergence-free basis finite element method with SUPG stabilization is used to formulate the weak form of the problem. The linear stability characteristics are studied under three possible inlet-outlet boundary conditions and the corresponding perturbation kinetic energy transfer mechanisms are investigated. Active transfer of perturbation kinetic energy at the channel inlet and outlet, energy production due to convection and dissipation at the flow bulk provide a new perspective in understanding the distinct stability characteristics of plane Poiseuille flow under various boundary conditions.


The problem of weakly nonlinear two- and three-dimensional oscillatory convection in the form of standing waves is studied for a horizontal layer of fluid heated from below and rotating about a vertical axis. The solutions to the nonlinear problem are determined by a perturbation technique and the stability of all the base flow solutions is investigated with respect to both standing wave and travelling wave disturbances. The results of the stability and the nonlinear analyses for various values of the rotation parameter τ and the Prandtl number P (0 ≼ P < 0.677) indicate that there is no subcritical instability and that all the base flow solutions are unstable. Disturbances with highest growth rates are found to be some particular disturbances superimposed on two-dimensional base flow. Particular standing wave disturbances parallel to two-dimensional base flow are the most unstable ones either for sufficiently small P or for intermediate values of P with τ below some critical value τ *. Travelling wave disturbances inclined at an angle of about 45° to the wave vector of two-dimensional base flow are the most unstable disturbances either for P sufficiently close to its upper limit or for intermediate values of P with τ ≽ τ *. The dependence on P and τ of the nonlinear effect on the frequency and of the heat flux are also discussed.


Sign in / Sign up

Export Citation Format

Share Document