scholarly journals Nonlinear waves in counter-current gas–liquid film flow

2011 ◽  
Vol 673 ◽  
pp. 19-59 ◽  
Author(s):  
D. TSELUIKO ◽  
S. KALLIADASIS

We investigate the dynamics of a thin laminar liquid film flowing under gravity down the lower wall of an inclined channel when turbulent gas flows above the film. The solution of the full system of equations describing the gas–liquid flow faces serious technical difficulties. However, a number of assumptions allow isolating the gas problem and solving it independently by treating the interface as a solid wall. This permits finding the perturbations to pressure and tangential stresses at the interface imposed by the turbulent gas in closed form. We then analyse the liquid film flow under the influence of these perturbations and derive a hierarchy of model equations describing the dynamics of the interface, i.e. boundary-layer equations, a long-wave model and a weakly nonlinear model, which turns out to be the Kuramoto–Sivashinsky equation with an additional term due to the presence of the turbulent gas. This additional term is dispersive and destabilising (for the counter-current case; stabilizing in the co-current case). We also combine the long-wave approximation with a weighted-residual technique to obtain an integral-boundary-layer approximation that is valid for moderately large values of the Reynolds number. This model is then used for a systematic investigation of the flooding phenomenon observed in various experiments: as the gas flow rate is increased, the initially downward-falling film starts to travel upwards while just before the wave reversal the amplitude of the waves grows rapidly. We confirm the existence of large-amplitude stationary waves by computing periodic travelling waves for the integral-boundary-layer approximation and we corroborate our travelling-wave results by time-dependent computations.

2011 ◽  
Vol 2011.64 (0) ◽  
pp. 201-202
Author(s):  
Jun NISHIYAMA ◽  
Akira NOGUCHI ◽  
Taichi OSETO ◽  
Mizue MUNEKATA ◽  
Hiroyuki YOSHIKAWA ◽  
...  

Author(s):  
Tatiana Gambaryan-Roisman ◽  
Hongyi Yu ◽  
Karsten Lo¨ffler ◽  
Peter Stephan

Falling films exhibit very complex wavy patterns, which depend on the properties of the liquid, the Reynolds number, the wall inclination angle, and the distance from the film inlet. The film hydrodynamics and the surface patterns have a high impact on heat and mass transfer. Our aim is to control and enhance heat and mass transport by using walls with specific micro topographies that influence the falling film flow, stability and wavy pattern. In the present work long-wave theory and integral boundary layer (IBL) approximation are used for modelling the falling film flow on walls with three-dimensional periodic microstructures. The wall topography is periodic both in the main flow direction and in the transverse direction. Examples of such microstructures are longitudinal grooves with sinusoidal path (or meandering grooves) and herringbone structures. The effects of the Reynolds number, the wall inclination angle and the longitudinal and transverse periods of the structure on the shape of liquid-gas interface are investigated. It is shown that, as opposed to straight grooves in longitudinal direction, grooves with meandering path may lead to significant interface deformations.


2010 ◽  
Vol 2010.63 (0) ◽  
pp. 213-214
Author(s):  
Jun NISHIYAMA ◽  
Hiroyuki YOSHIKAWA ◽  
Mizue MUNEKATA ◽  
Akira NOGUCHI ◽  
Toru YAMADA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document