Non-linear wave propagation in a relaxing gas

1969 ◽  
Vol 39 (2) ◽  
pp. 329-345 ◽  
Author(s):  
H. Ockendon ◽  
D. A. Spence

We consider the propagation of waves of small finite amplitude ε in a gas whose internal energy is characterized by two temperatures T (translational) and Ti (internal) in the form e = CvfT + CvfTi, and Ti is governed by a rate equation dTi/dt = (T − Ti)/τ. By means of approximations appropriate for a wave advancing into an undisturbed region x > 0, we show that to order εδ, the equation satisfied by velocity takes the non-linear form \[ \bigg(\tau\frac{\partial}{\partial t}+1\bigg)\bigg\{\frac{\partial u}{\partial t}+\bigg(a_1+\frac{\gamma + 1}{2}u\bigg)\frac{\partial u}{\partial x}-{\textstyle\frac{1}{2}}\lambda\frac{\partial^2u}{\partial x^2}\bigg\}=(a_1-a_0)\frac{\partial u}{\partial x}, \] where a1, a0 are the frozen and equilibrium speeds of sound in the undisturbed region, δ = ½(1 − (a20/a21)), and λ is the diffusivity of sound due to viscosity and heat conduction (λ may be neglected except when discussing the fine structure of a discontinuity). Some numerical solutions of this model equation are given.When ε is small compared with δ, it is also possible to construct a solution for the flow produced by a piston moving with a constant velocity by means of a sequence of matched asymptotic expansions. The limit reached for large times for either compressive or expansive pistons is the expected non-linear solution of the exact equations. For a certain range of advancing piston speeds, this is a fully dispersed wave with velocity U in the range a0 < U < a1. If U > a1 the solution is discontinuous, and indeterminate in the absence of viscosity; a singular perturbation technique based on λ is then used to determine the structure of the wave head.

Author(s):  
Yusong Cao ◽  
Fuwei Zhang ◽  
Tae-Hwan Joung ◽  
Anders Ostman ◽  
Trygve Kristiansen

This paper presents a preliminary assessment of the computational accuracy and efficiency of three different prediction methods for the water motion inside the moonpool of a rectangular box with forced vertical motion in a water tank. The first method is a linear solution method based on the linear wave diffraction/radiation theory (WAMIT). The second one is a method based on a CFD simulation (STAR-CCM+), the third method is a hybrid method combining a potential flow solver and a viscous flow solver (PVC3D). The accuracy of each method is assessed by comparing the prediction with the physical test data. The computational efficiency (complexity of setting up the computation and the computation speed) of the methods is discussed.


Author(s):  
H H Afshari ◽  
E Taheri

An optimal control solution to the highly non-linear problem of orbit transfer mission is achieved by using a newly proposed analytical perturbation technique. The problem is classified as a two-point boundary value problem in order to optimize a performance measure in a given time. Assuming a constant thrust operating in a given length of time, it is sought to find the thrust direction history of a transfer from a given initial orbit to the largest possible orbit. The system dynamical model is stated by regarding a variable mass spacecraft moving in the variable gravitational field of the Earth, based on the two-body problem. To assess the perturbation solution fidelity, a numerical solution based on the Gauss pseudospectral method has been employed. The main novelty of this work is in applying a new analytical solution strategy that is a combination of perturbation technique and backward integration to a highly non-linear problem in the calculus of variations approach.


Author(s):  
Gu¨nther F. Clauss ◽  
Janou Hennig ◽  
Christian E. Schmittner ◽  
Walter L. Ku¨hnlein

The experimental investigation of extreme wave/structure interaction scenarios puts high demands on wave generation and calculation. This paper presents different approaches for modelling non-linear wave propagation. Results of numerical simulations from two different numerical wave tanks are compared to models tests. A further approach uses analytical wave models which are combined with empirical terms to allow a fast and precise prediction of non-linear wave propagation for day-to-day use. All approaches can be used either separately or in combination — depending on their particular purpose. As an application, different special wave scenarios — both academic and realistic — are generated and validated by measurements. The advantages and disadvantages of the presented methods are discussed in detail with regard to their appropriate use for investigations of extreme structure behaviour.


Sign in / Sign up

Export Citation Format

Share Document