scholarly journals Laminar momentum jets in a stratified fluid

1971 ◽  
Vol 45 (3) ◽  
pp. 561-574 ◽  
Author(s):  
E. J. List

Solutions are presented for creeping flows induced by two-and three-dimensional horizontal and vertical momentum jets in a linearly stratified unbounded diffusive viscous fluid. These linear problems are solved by replacing the momentum jet by a body force singularity represented by delta functions and solving the partial differential equations of motion by use of multi-dimensional Fourier transforms. The integral representations for the physical variables are evaluated by a combination of residue theory and numerical integration.The solutions for vertical jets show the jet to be trapped within a layer of finite thickness and systems of rotors to be induced. The horizontal two-dimensional jet solution shows return flows above and below the jet and a pair of rotors. The three-dimensional horizontal jet has no return flow at finite distance and the diffusive contribution is found to be almost negligible in most situations, the primary character of the horizontal flows being given by the non-diffusive solution. Stokes's paradox is found to be non-existent in a density-stratified fluid.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Marc Geiller ◽  
Christophe Goeller ◽  
Nelson Merino

Abstract We show that the phase space of three-dimensional gravity contains two layers of dualities: between diffeomorphisms and a notion of “dual diffeomorphisms” on the one hand, and between first order curvature and torsion on the other hand. This is most elegantly revealed and understood when studying the most general Lorentz-invariant first order theory in connection and triad variables, described by the so-called Mielke-Baekler Lagrangian. By analyzing the quasi-local symmetries of this theory in the covariant phase space formalism, we show that in each sector of the torsion/curvature duality there exists a well-defined notion of dual diffeomorphism, which furthermore follows uniquely from the Sugawara construction. Together with the usual diffeomorphisms, these duals form at finite distance, without any boundary conditions, and for any sign of the cosmological constant, a centreless double Virasoro algebra which in the flat case reduces to the BMS3 algebra. These algebras can then be centrally-extended via the twisted Sugawara construction. This shows that the celebrated results about asymptotic symmetry algebras are actually generic features of three-dimensional gravity at any finite distance. They are however only revealed when working in first order connection and triad variables, and a priori inaccessible from Chern-Simons theory. As a bonus, we study the second order equations of motion of the Mielke-Baekler model, as well as the on-shell Lagrangian. This reveals the duality between Riemannian metric and teleparallel gravity, and a new candidate theory for three-dimensional massive gravity which we call teleparallel topologically massive gravity.



Author(s):  
Mergen H. Ghayesh ◽  
Hamed Farokhi

The three-dimensional (3D) nonlinear dynamics of an axially accelerating beam is examined numerically taking into account all of the longitudinal, transverse, and lateral displacements and inertia. Hamilton’s principle is employed in order to derive the nonlinear partial differential equations governing the longitudinal, transverse, and lateral motions. These equations are transformed into a set of nonlinear ordinary differential equations by means of the Galerkin discretization technique. The nonlinear global dynamics of the system is then examined by time-integrating the discretized equations of motion. The results are presented in the form of bifurcation diagrams of Poincaré maps, time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs).



Author(s):  
Tamer M. Wasfy ◽  
Cagkan Yildiz ◽  
Hatem M. Wasfy ◽  
Jeanne M. Peters

A necessary condition for high-fidelity dynamic simulation of belt-drives is to accurately predict the belt stresses, pulley angular velocities, belt slip, and belt-drive energy efficiency. In previous papers, those quantities were predicted using thin shell, beam, or truss elements along with a Coulomb friction model. However, flat rubber belts have a finite thickness and the reinforcements are typically located near the top surface of the belt. In this paper, the effect of the belt thickness on the aforementioned response quantities is studied using a two-pulley belt-drive. The belt rubber matrix is modeled using three-dimensional brick elements. Belt reinforcements are modeled using one-dimensional truss elements at the top surface of the belt. Friction between the belt and the pulleys is modeled using an asperity-based Coulomb friction model. The pulleys are modeled as cylindrical rigid bodies. The equations of motion are integrated using a time-accurate explicit solution procedure.



Author(s):  
Mergen H. Ghayesh ◽  
Marco Amabili ◽  
Hamed Farokhi

The geometrically nonlinear dynamics of a three-dimensional axially moving beam is investigated numerically for both sub and supercritical regimes. Hamilton’s principle is employed to derive the equations of motion for in-plane and out-of plane displacements. The Galerkin scheme is applied to the nonlinear partial differential equations of motion yielding a set of second-order nonlinear ordinary differential equations with coupled terms. The pseudo-arclength continuation technique is employed to solve the discretized equations numerically so as to obtain the nonlinear resonant responses; direct time integration is conducted to obtain the bifurcation diagrams of the system. The results are presented in the form of the frequency-response curves, bifurcation diagrams, time histories, phase-plane portraits, and fast Fourier transforms for different sets of system parameters.



2009 ◽  
Vol 37 (2) ◽  
pp. 62-102 ◽  
Author(s):  
C. Lecomte ◽  
W. R. Graham ◽  
D. J. O’Boy

Abstract An integrated model is under development which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle. Here, the tire belt model used as part of this prediction method is first briefly presented and discussed, and it is then compared to other models available in the literature. This component will be linked to the tread blocks through normal and tangential forces and to the sidewalls through impedance boundary conditions. The tire belt is modeled as an orthotropic cylindrical ring of negligible thickness with rotational effects, internal pressure, and prestresses included. The associated equations of motion are derived by a variational approach and are investigated for both unforced and forced motions. The model supports extensional and bending waves, which are believed to be the important features to correctly predict the hub forces in the midfrequency (50–500 Hz) range of interest. The predicted waves and forced responses of a benchmark structure are compared to the predictions of several alternative analytical models: two three dimensional models that can support multiple isotropic layers, one of these models include curvature and the other one is flat; a one-dimensional beam model which does not consider axial variations; and several shell models. Finally, the effects of internal pressure, prestress, curvature, and tire rotation on free waves are discussed.



2000 ◽  
Vol 37 (51) ◽  
pp. 7617-7632 ◽  
Author(s):  
Zhenhuan Li ◽  
Wanlin Guo ◽  
Zhenbang Kuang


2021 ◽  
Vol 9 (1) ◽  
pp. 76
Author(s):  
Duoc Nguyen ◽  
Niels Jacobsen ◽  
Dano Roelvink

This study aims at developing a new set of equations of mean motion in the presence of surface waves, which is practically applicable from deep water to the coastal zone, estuaries, and outflow areas. The generalized Lagrangian mean (GLM) method is employed to derive a set of quasi-Eulerian mean three-dimensional equations of motion, where effects of the waves are included through source terms. The obtained equations are expressed to the second-order of wave amplitude. Whereas the classical Eulerian-mean equations of motion are only applicable below the wave trough, the new equations are valid until the mean water surface even in the presence of finite-amplitude surface waves. A two-dimensional numerical model (2DV model) is developed to validate the new set of equations of motion. The 2DV model passes the test of steady monochromatic waves propagating over a slope without dissipation (adiabatic condition). This is a primary test for equations of mean motion with a known analytical solution. In addition to this, experimental data for the interaction between random waves and a mean current in both non-breaking and breaking waves are employed to validate the 2DV model. As shown by this successful implementation and validation, the implementation of these equations in any 3D model code is straightforward and may be expected to provide consistent results from deep water to the surf zone, under both weak and strong ambient currents.



Joint Rail ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Mohammad Mehdi Jalili Bahabadi

In this article a train model is developed for studying train derailment in passing through bends. The model is three dimensional, nonlinear, and considers 43 degrees of freedom for each wagon. All nonlinear characteristics of suspension elements as well as flexibilities of wagon body and bogie frame, and the effect of coupler forces are included in the model. The equations of motion for the train are solved numerically for different train conditions. A neural network was constructed as an element in solution loop for determination of wheel-rail contact geometry. Derailment factor was calculated for each case. The results are presented and show the major role of coupler forces on possible train derailment.



AIAA Journal ◽  
10.2514/2.468 ◽  
1998 ◽  
Vol 36 (6) ◽  
pp. 981-985 ◽  
Author(s):  
Robert E. Robins ◽  
Donald P. Delisi


Author(s):  
Quan Gu ◽  
Jinghao Pan ◽  
Yongdou Liu

Consistent tangent stiffness plays a crucial role in delivering a quadratic rate of convergence when using Newton’s method in solving nonlinear equations of motion. In this paper, consistent tangent stiffness is derived for a three-dimensional (3D) wheel–rail interaction element (WRI element for short) originally developed by the authors and co-workers. The algorithm has been implemented in finite element (FE) software framework (OpenSees in this paper) and proven to be effective. Application examples of wheelset and light rail vehicle are provided to validate the consistent tangent stiffness. The quadratic convergence rate is verified. The speeds of calculation are compared between the use of consistent tangent stiffness and the tangent by perturbation method. The results demonstrate the improved computational efficiency of WRI element when consistent tangent stiffness is used.



Sign in / Sign up

Export Citation Format

Share Document