scholarly journals Most general theory of 3d gravity: covariant phase space, dual diffeomorphisms, and more

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Marc Geiller ◽  
Christophe Goeller ◽  
Nelson Merino

Abstract We show that the phase space of three-dimensional gravity contains two layers of dualities: between diffeomorphisms and a notion of “dual diffeomorphisms” on the one hand, and between first order curvature and torsion on the other hand. This is most elegantly revealed and understood when studying the most general Lorentz-invariant first order theory in connection and triad variables, described by the so-called Mielke-Baekler Lagrangian. By analyzing the quasi-local symmetries of this theory in the covariant phase space formalism, we show that in each sector of the torsion/curvature duality there exists a well-defined notion of dual diffeomorphism, which furthermore follows uniquely from the Sugawara construction. Together with the usual diffeomorphisms, these duals form at finite distance, without any boundary conditions, and for any sign of the cosmological constant, a centreless double Virasoro algebra which in the flat case reduces to the BMS3 algebra. These algebras can then be centrally-extended via the twisted Sugawara construction. This shows that the celebrated results about asymptotic symmetry algebras are actually generic features of three-dimensional gravity at any finite distance. They are however only revealed when working in first order connection and triad variables, and a priori inaccessible from Chern-Simons theory. As a bonus, we study the second order equations of motion of the Mielke-Baekler model, as well as the on-shell Lagrangian. This reveals the duality between Riemannian metric and teleparallel gravity, and a new candidate theory for three-dimensional massive gravity which we call teleparallel topologically massive gravity.

1987 ◽  
Vol 33 (114) ◽  
pp. 177-185 ◽  
Author(s):  
Niels Reeh

AbstractThe problem of ice flow over threedimensional basal irregularities is studied by considering the steady motion of a fluid with a linear constitutive equation over sine-shaped basal undulations. The undisturbed flow is simple shear flow with constant depth. Using the ratio of the amplitude of the basal undulations to the ice thickness as perturbation parameter, equations to the first order for the velocity and pressure perturbations are set up and solved.The study shows that when the widths of the basal undulations are larger than 2–3 times their lengths, the finite width of the undulations has only a minor influence on the flow, which to a good approximation may be considered two-dimensional. However, as the ratio between the longitudinal and the transverse wavelengthL/Wincreases, the three-dimensional flow effects becomes substantial. If, for example, the ratio ofLtoWexceeds 3, surface amplitudes are reduced by more than one order of magnitude as compared to the two-dimensional case. TheL/Wratio also influences the depth variation of the amplitudes of internal layers and the depth variation of perturbation velocities and strain-rates. With increasingL/Wratio, the changes of these quantities are concentrated in a near-bottom layer of decreasing thickness. Furthermore, it is shown, that the azimuth of the velocity vector may change by up to 10° between the surface and the base of the ice sheet, and that significant transverse flow may occur at depth without manifesting itself at the surface to any significant degree.


1987 ◽  
Vol 33 (114) ◽  
pp. 177-185 ◽  
Author(s):  
Niels Reeh

AbstractThe problem of ice flow over threedimensional basal irregularities is studied by considering the steady motion of a fluid with a linear constitutive equation over sine-shaped basal undulations. The undisturbed flow is simple shear flow with constant depth. Using the ratio of the amplitude of the basal undulations to the ice thickness as perturbation parameter, equations to the first order for the velocity and pressure perturbations are set up and solved.The study shows that when the widths of the basal undulations are larger than 2–3 times their lengths, the finite width of the undulations has only a minor influence on the flow, which to a good approximation may be considered two-dimensional. However, as the ratio between the longitudinal and the transverse wavelength L/W increases, the three-dimensional flow effects becomes substantial. If, for example, the ratio of L to W exceeds 3, surface amplitudes are reduced by more than one order of magnitude as compared to the two-dimensional case. The L/W ratio also influences the depth variation of the amplitudes of internal layers and the depth variation of perturbation velocities and strain-rates. With increasing L/W ratio, the changes of these quantities are concentrated in a near-bottom layer of decreasing thickness. Furthermore, it is shown, that the azimuth of the velocity vector may change by up to 10° between the surface and the base of the ice sheet, and that significant transverse flow may occur at depth without manifesting itself at the surface to any significant degree.


1972 ◽  
Vol 14 (7) ◽  
pp. 29-33 ◽  
Author(s):  
M. Fujino

By way of introduction the paper discusses conflicting observations of stability behaviour of ships in restricted waters. The equations of motion of a ship in a narrow channel are given, leading to stability criteria; differences from the deep water case are highlighted. More qualitatively, the theory also illustrates the asymmetric hydrodynamic force. Criteria are outlined for an automatic control system to improve stability. However, the first-order theory is shown to provide an inadequate description of all experimental results.


2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
H. García-Compeán ◽  
O. Obregón ◽  
R. Santos-Silva

Some geometric and topological implications of noncommutative Wilson loops are explored via the Seiberg-Witten map. In the abelian Chern-Simons theory on a three-dimensional manifold, it is shown that the effect of noncommutativity is the appearance of6nnew knots at thenth order of the Seiberg-Witten expansion. These knots are trivial homology cycles which are Poincaré dual to the higher-order Seiberg-Witten potentials. Moreover the linking number of a standard 1-cycle with the Poincaré dual of the gauge field is shown to be written as an expansion of the linking number of this 1-cycle with the Poincaré dual of the Seiberg-Witten gauge fields. In the process we explicitly compute the noncommutative “Jones-Witten” invariants up to first order in the noncommutative parameter. Finally in order to exhibit a physical example, we apply these ideas explicitly to the Aharonov-Bohm effect. It is explicitly displayed at first order in the noncommutative parameter; we also show the relation to the noncommutative Landau levels.


1971 ◽  
Vol 45 (3) ◽  
pp. 561-574 ◽  
Author(s):  
E. J. List

Solutions are presented for creeping flows induced by two-and three-dimensional horizontal and vertical momentum jets in a linearly stratified unbounded diffusive viscous fluid. These linear problems are solved by replacing the momentum jet by a body force singularity represented by delta functions and solving the partial differential equations of motion by use of multi-dimensional Fourier transforms. The integral representations for the physical variables are evaluated by a combination of residue theory and numerical integration.The solutions for vertical jets show the jet to be trapped within a layer of finite thickness and systems of rotors to be induced. The horizontal two-dimensional jet solution shows return flows above and below the jet and a pair of rotors. The three-dimensional horizontal jet has no return flow at finite distance and the diffusive contribution is found to be almost negligible in most situations, the primary character of the horizontal flows being given by the non-diffusive solution. Stokes's paradox is found to be non-existent in a density-stratified fluid.


Author(s):  
Shoichi Kawamoto ◽  
Koichi Nagasaki ◽  
Wen-Yu Wen

Abstract We consider charged rotating BTZ black holes in noncommutative space using a Chern–Simons theory formulation of $(2+1)$-dimensional gravity. The noncommutativity between the radial and the angular variables is introduced through the Seiberg–Witten map for gauge fields, and the deformed geometry to the first order in the noncommutative parameter is derived. It is found that the deformation also induces nontrivial torsion, and Einstein–Cartan theory appears to be a suitable framework to investigate the equations of motion. Though the deformation is indeed nontrivial, the deformed and the original Einstein equations are found to be related by a rather simple coordinate transformation.


2010 ◽  
Vol 25 (17) ◽  
pp. 3453-3480 ◽  
Author(s):  
D. G. C. MCKEON

The Dirac constraint formalism is used to analyze the first-order form of the Einstein–Hilbert action in d > 2 dimensions. Unlike previous treatments, this is done without eliminating fields at the outset by solving equations of motion that are independent of time derivatives when they correspond to first class constraints. As anticipated by the way in which the affine connection transforms under a diffeomorphism, not only primary and secondary but also tertiary first class constraints arise. These leave d(d-3) degrees of freedom in phase space. The gauge invariance of the action is discussed, with special attention being paid to the gauge generators of Henneaux, Teitelboim and Zanelli and of Castellani.


Author(s):  
P Herman

In this article, some remarks concerning dynamics investigation of a manipulator described using first-order equations of motion with a viscous damping model is conducted. The viscous damping model arises from the Rayleigh dissipation potential and decomposition of the manipulator mass matrix. As a result, it takes into account both kinematic and mechanical parameters of the system. Moreover, the use of first-order equations of motion leads to obtaining some interesting insight into the manipulator dynamics. The proposed approach was tested on a three-degrees-of-freedom, three-dimensional Yasukawa-like robot.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550047
Author(s):  
Eyo Eyo Ita

In this paper, we examine the phase space structure of a noncanonical formulation of four-dimensional gravity referred to as the Instanton representation of Plebanski gravity (IRPG). The typical Hamiltonian (symplectic) approach leads to an obstruction to the definition of a symplectic structure on the full phase space of the IRPG. We circumvent this obstruction, using the Lagrange equations of motion, to find the appropriate generalization of the Poisson bracket. It is shown that the IRPG does not support a Poisson bracket except on the vector constraint surface. Yet there exists a fundamental bilinear operation on its phase space which produces the correct equations of motion and induces the correct transformation properties of the basic fields. This bilinear operation is known as the almost-Poisson bracket, which fails to satisfy the Jacobi identity and in this case also the condition of antisymmetry. We place these results into the overall context of nonsymplectic systems.


2007 ◽  
Vol 22 (04) ◽  
pp. 851-867 ◽  
Author(s):  
ALEJANDRO GAONA ◽  
J. ANTONIO GARCÍA

We consider some aspects of classical S-duality transformations in first-order actions taking into account the general covariance of the Dirac algorithm and the transformation properties of the Dirac bracket. By classical S-duality transformations we mean a field redefinition that interchanges the equations of motion and its associated Bianchi identities. By working from a first-order variational principle and performing the corresponding Dirac analysis we find that the standard electromagnetic duality can be reformulated as a canonical local transformation. The reduction from this phase space to the original phase space variables coincides with the well-known result about duality as a canonical nonlocal transformation. We have also applied our ideas to the bosonic string. These dualities are not canonical transformations for the Dirac bracket and relate actions with different kinetic terms in the reduced space.


Sign in / Sign up

Export Citation Format

Share Document