The ‘sliced-cylinder’ laboratory model of the wind-driven ocean circulation. Part 1. Steady forcing and topographic Rossby wave instability

1975 ◽  
Vol 69 (1) ◽  
pp. 27-40 ◽  
Author(s):  
R. C. Beardsley ◽  
K. Robbins

The nonlinear response of the ‘sliced-cylinder’ laboratory model for the wind-driven ocean circulation is re-examined here in part 1 for the case of strong steady forcing. Introduced by Pedlosky & Greenspan (1967), the model consists of a rapidly rotating right cylinder with a planar sloping bottom. The homogeneous contained fluid is driven by the slow rotation of the flat upper lid relative to the rest of the basin. Except in thin Ekman and Stewartson boundary layers on the solid surfaces of the basin, the horizontal flow in the interior and western boundary layer is constrained by the rapid rotation of the basin to be independent of depth. The model thus effectively simulates geophysical flows through the physical analogy between topographic vortex stretching in the laboratory model and the creation of relative vorticity in planetary flows by the β effect.As the forcing is increased, the flow in both the sliced-cylinder laboratory and numerical models first exhibits downstream intensification in the western boundary layer. At greater forcing, separation of the western boundary current occurs with the development of stationary topographic Rossby waves in the western boundary-layer transition regions. The observed flow ultimately becomes unstable when a critical Ekman-layer Reynolds number is exceeded. We first review and compare the experimental and numerical descriptions of this low-frequency instability, then present a simple theoretical model which successfully explains this observed instability in terms of thelocalbreakdown of the finite-amplitude topographic Rossby waves embedded in the western boundary current transition region. The inviscid stability analysis of Lorenz (1972) is extended to include viscous effects, with the consequence that dissipative processes in the sliced-cylinder problem (i.e. lateral and bottom friction) are shown to inhibit the onset of the instability until the topographic Rossby wave slope exceeds a finite critical value.

1969 ◽  
Vol 38 (2) ◽  
pp. 255-271 ◽  
Author(s):  
R. C. Beardsley

A simple laboratory model for the wind-driven ocean circulation is re-studied experimentally and theoretically. Introduced by Pedlosky & Greenspan (1967), the model consists of a rotating cylinder with sloping bottom, the fluid inside being driven by the steady relative rotation of the cylinder's lid. A linear theory is developed to illustrate the modification in the interior and Stewartson boundary layers caused by variation of the bottom slope from 0 to O(1); Stommel's (1948) model is obtained when the bottom slope tan α [Lt ] E¼, and the Munk & Carrier (1950) model is obtained for E¼ [Lt ] tan α [Lt ] 1 (E is the Ekman number). Measurements of the interior cross-contour ‘Sverdrup’ velocity agree well with theory when the Ekman-layer Reynolds number RE is ≈ 1 or less. The western boundarylayer azimuthal velocity agrees reasonably well with theory, although the observed variation with depth and bottom slope were not predicted. The western boundary layer shows downstream intensification when RE is increased from ≈ 1 until topographic Rossby waves appear in the transition region between western boundary layer and interior. The motion becomes unstable when a critical value of RE is reached, independent of the bottom slope, and a low-frequency two-dimensional flow oscillation is observed. A brief comparison is made with previous wind-driven ocean circulation studies.


A laboratory model for the study of a barotropic general ocean circulation has been constructed following the strict geometrical constraints of the B-plane approximation. Fluid is confined by plastic blocks to the volume defined by the intersection of two spherical surfaces, of common centre and slightly different radii with a circular cylinder whose axis intersects the centre of the spheres. The entire system is rotated and an interior circulation is provided by relative rotation of one of the bounding blocks. Uniform density of the rigidly enclosed fluid ensures the irrelevance of laboratory gravity and the absence of centrifugal effects on the flow. Fluid flow is observed with an electrochemical technique. Lines of coloured fluid which move with the local velocity are produced and photographed; velocities are inferred to 5% accuracy. Rossby numbers from 1.3 x 10-4 to 7.7 and Ekman numbers from 3.1 x 10-4 to 3.1 x 10-2 have been achieved. The apparatus can be oriented at an arbitrary mean latitude. The phenomena characteristic of linear subtropical gyres have been observed: a meridional Sverdrup flow, its associated zonal flow and a western boundary current. The existence, structure, and parameter dependencies of these features are in good agreement with the predictions of a general linear boundary layer analysis which has been developed for a thin barotropic ocean. The Sverdrup vorticity balance and the width and structure of the bottom frictional western boundary current have been established within the experimental uncertainties. In the nonlinear regime the position of the centre of the gyre has been measured as it migrates north-westward; a poleward eastern boundary current appears. These results agree with theoretical estimates for the onset of nonlinear behaviour. A long period time dependent flow is observed for high Rossby number. Quantitative studies have been made on an equatorial undercurrent which moves in a direction opposite to the surface forcing velocity. For low Rossby numbers this flow reverses with change in direction of the forcing velocity. In the nonlinear regime, the westward flowing undercurrent developed a streakiness and disappeared; whereas the eastward flowing current remained defined and measurable.


Author(s):  
QI QUAN ◽  
ZHONGYA CAI ◽  
GUANGZHEN JIN ◽  
ZHIQIANG LIU

AbstractTopographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in-phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.


2014 ◽  
Vol 32 (2) ◽  
pp. 241 ◽  
Author(s):  
Janini Pereira ◽  
Mariela Gabioux ◽  
Martinho Marta Almeida ◽  
Mauro Cirano ◽  
Afonso M. Paiva ◽  
...  

ABSTRACT. The results of two high-resolution ocean global circulation models – OGCMs (Hybrid Coordinate Ocean Model – HYCOM and Ocean Circulation andClimate Advanced Modeling Project – OCCAM) are analyzed with a focus on the Western Boundary Current (WBC) system of the South Atlantic Ocean. The volumetransports are calculated for different isopycnal ranges, which represent the most important water masses present in this region. The latitude of bifurcation of the zonalflows reaching the coast, which leads to the formation of southward or northward WBC flow at different depths (or isopycnal levels) is evaluated. For the Tropical Water,bifurcation of the South Equatorial Current occurs at 13◦-15◦S, giving rise to the Brazil Current, for the South Atlantic Central Water this process occurs at 22◦S.For the Antarctic Intermediate Water, bifurcation occurs near 28◦-30◦S, giving rise to a baroclinic unstable WBC at lower latitudes with a very strong vertical shearat mid-depths. Both models give similar results that are also consistent with previous observational studies. Observations of the South Atlantic WBC system havepreviously been sparse, consequently these two independent simulations which are based on realistic high-resolution OGCMs, add confidence to the values presentedin the literature regarding flow bifurcations at the Brazilian coast.Keywords: Southwestern Atlantic circulation, water mass, OCCAM, HYCOM. RESUMO. Resultados de dois modelos globais de alta resolução (HYCOM e OCCAM) são analisados focando o sistema de Corrente de Contorno Oeste do Oceano Atlântico Sul. Os transportes de volume são calculados para diferentes níveis isopicnais que representam as principais massas de água da região. É apresentada a avaliação da latitude de bifurcação do fluxo zonal que atinge a costa, permitindo a formação dos fluxos da Corrente de Contorno Oeste para o sul e para o norte emdiferentes níveis de profundidades (ou isopicnal). Para a Água Tropical, a bifurcação da Corrente Sul Equatorial ocorre entre 13◦-15◦S, originando a Corrente do Brasil, e para a Água Central do Atlântico Sul ocorre em 22◦S. A bifurcação daÁgua Intermediária Antártica ocorre próximo de 28◦-30◦S, dando um aumento na instabilidade baroclínica da Corrente de Contorno Oeste em baixas latitudes e com um forte cisalhamento vertical em profundidades intermediárias. Ambos os modelos apresentamresultados similares e consistentes com estudos observacionais prévios. Considerando que as observações do sistema de Corrente de Contorno Oeste do Atlântico Sul são escassas, essas duas simulações independentes com modelos globais de alta resolução adicionam confiança aos valores apresentados na literatura, relacionadosaos fluxos das bifurcações na costa do Brasil.Palavras-chave: circulação do Atlântico Sudoeste, massas de água, OCCAM, HYCOM.


Ocean Science ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 209-222 ◽  
Author(s):  
Michel Michaelovitch de Mahiques ◽  
Till Jens Jörg Hanebuth ◽  
Renata Hanae Nagai ◽  
Marcia Caruso Bícego ◽  
Rubens Cesar Lopes Figueira ◽  
...  

Abstract. In this study, we use inorganic (metal) and organic (bulk and molecular) markers in sediment samples of the south-eastern Brazilian margin to investigate the response of geochemical fingerprints to the complex hydrodynamic processes present in the area. Results indicate the potential of export of terrigenous siliciclastic and organic constituents to the upper slope, even in an area with limited fluvial supply.Metal contents and especially the ln(Ti ∕ Al) and ln(Fe ∕ K) ratios make it possible to recognise the extension of shelf sediments toward the upper slope. Potassium, here expressed as ln(K ∕ Sc) and ln(K ∕ Al) ratios used as proxies of illite–kaolinite variations, proved to be an important parameter, especially because it allowed us to decipher the imprint of the northward flow of the Intermediate Western Boundary Current (IWBC) in comparison to the southward flows of the Brazil Current (BC) and Deep Western Boundary Current (DWBC). Using organic matter analyses, we were able to evaluate the extent of terrestrial contributions to the outer shelf and slope, even without the presence of significant fluvial input. In addition, molecular markers signify a slight increase in the input of C4-derived plants to the slope sediments, transported from distant areas by the main alongshore boundary currents, indicating that the terrestrial fraction of the organic matter deposited on the slope has a distinct origin when compared to shelf sediments.


2020 ◽  
Vol 50 (2) ◽  
pp. 455-469 ◽  
Author(s):  
Michael A. Spall ◽  
David Nieves

AbstractThe mechanisms by which time-dependent wind stress anomalies at midlatitudes can force variability in the meridional overturning circulation at low latitudes are explored. It is shown that winds are effective at forcing remote variability in the overturning circulation when forcing periods are near the midlatitude baroclinic Rossby wave basin-crossing time. Remote overturning is required by an imbalance in the midlatitude mass storage and release resulting from the dependence of the Rossby wave phase speed on latitude. A heuristic theory is developed that predicts the strength and frequency dependence of the remote overturning well when compared to a two-layer numerical model. The theory indicates that the variable overturning strength, relative to the anomalous Ekman transport, depends primarily on the ratio of the meridional spatial scale of the anomalous wind stress curl to its latitude. For strongly forced systems, a mean deep western boundary current can also significantly enhance the overturning variability at all latitudes. For sufficiently large thermocline displacements, the deep western boundary current alternates between interior and near-boundary pathways in response to fluctuations in the wind, leading to large anomalies in the volume of North Atlantic Deep Water stored at midlatitudes and in the downstream deep western boundary current transport.


2016 ◽  
Author(s):  
Michel Michaelovitch de Mahiques ◽  
Till Jens Jörg Hanebuth ◽  
Renata Hanae Nagai ◽  
Marcia Caruso Bícego ◽  
Rubens Cesar Lopes Figueira ◽  
...  

Abstract. In this study, we use inorganic (metals) and organic (bulk and molecular) markers in sediment samples of the southeastern Brazilian margin to investigate the response of geochemical fingerprints to the complex hydrodynamic processes present in the area. Results indicate the potential of export of terrigenous siliciclastic and organic constituents to the upper slope, even in an area with limited fluvial supply. Metal contents and especially the ln(Ti/Al) and ln(Fe/K) ratios make it possible to recognize the extension of shelf sediments toward the upper slope. Potassium, here expressed as ln(K/Sc) and ln(K/Al) ratios used as proxies of illite–kaolinite variations, proved to be an important parameter, especially because it allowed us to decipher the imprint of the northward flow of the Intermediate Western Boundary Current (IWBC) in comparison to the southward flows of the Brazil Current (BC) and Deep Western Boundary Current (DWBC). Using organic matter analyses, we were able to evaluate the extent of terrestrial contributions to the outer shelf and slope, even without the presence of significant fluvial input. In addition, molecular markers signify a slight increase in the input of C4-derived plants to the slope sediments, transported from distant areas by the main alongshore boundary currents, indicating that the terrestrial fraction of the organic matter deposited on the slope has a distinct origin when compared to shelf sediments.


Sign in / Sign up

Export Citation Format

Share Document