Experiments on a viscous fluid flow between concentric rotating spheres

1976 ◽  
Vol 78 (2) ◽  
pp. 317-335 ◽  
Author(s):  
Manfred Wimmer

Some experimental results on incompressible viscous fluid flow in the gap between two concentric rotating spheres are discussed. The flow field in the spherical gap has been studied qualitatively by flow visualization (photographs) and quantitatively by measurements by the hot-wire technique. For a wide range of Reynolds numbers, the friction torque was measured for several gap widths and a relatively simple method of determining the torque theoretically is given. At higher Reynolds numbers instabilities appear. Their different behaviour for relatively small and large gap widths is demonstrated. For the larger gap widths, the different appearance of the Taylor–Görtler vortices, the reason for their generation, their regimes of existence as well as their influence on the friction torque are thoroughly treated. Detailed information is given on the new effect of the dependence of the wavelength of the vortices on the Reynolds number.

2009 ◽  
Vol 635 ◽  
pp. 103-136 ◽  
Author(s):  
N. HUTCHINS ◽  
T. B. NICKELS ◽  
I. MARUSIC ◽  
M. S. CHONG

Careful reassessment of new and pre-existing data shows that recorded scatter in the hot-wire-measured near-wall peak in viscous-scaled streamwise turbulence intensity is due in large part to the simultaneous competing effects of the Reynolds number and viscous-scaled wire length l+. An empirical expression is given to account for these effects. These competing factors can explain much of the disparity in existing literature, in particular explaining how previous studies have incorrectly concluded that the inner-scaled near-wall peak is independent of the Reynolds number. We also investigate the appearance of the so-called outer peak in the broadband streamwise intensity, found by some researchers to occur within the log region of high-Reynolds-number boundary layers. We show that the ‘outer peak’ is consistent with the attenuation of small scales due to large l+. For turbulent boundary layers, in the absence of spatial resolution problems, there is no outer peak up to the Reynolds numbers investigated here (Reτ = 18830). Beyond these Reynolds numbers – and for internal geometries – the existence of such peaks remains open to debate. Fully mapped energy spectra, obtained with a range of l+, are used to demonstrate this phenomenon. We also establish the basis for a ‘maximum flow frequency’, a minimum time scale that the full experimental system must be capable of resolving, in order to ensure that the energetic scales are not attenuated. It is shown that where this criterion is not met (in this instance due to insufficient anemometer/probe response), an outer peak can be reproduced in the streamwise intensity even in the absence of spatial resolution problems. It is also shown that attenuation due to wire length can erode the region of the streamwise energy spectra in which we would normally expect to see kx−1 scaling. In doing so, we are able to rationalize much of the disparity in pre-existing literature over the kx−1 region of self-similarity. Not surprisingly, the attenuated spectra also indicate that Kolmogorov-scaled spectra are subject to substantial errors due to wire spatial resolution issues. These errors persist to wavelengths far beyond those which we might otherwise assume from simple isotropic assumptions of small-scale motions. The effects of hot-wire length-to-diameter ratio (l/d) are also briefly investigated. For the moderate wire Reynolds numbers investigated here, reducing l/d from 200 to 100 has a detrimental effect on measured turbulent fluctuations at a wide range of energetic scales, affecting both the broadband intensity and the energy spectra.


In this article manages the issue of stable electrically lead laminar progression of a gooey incompressible liquid stream associating two parallel permeable plates of a divert in the event of a transverse attractive field through base infusion and top suction. Dependable vertical stream is made and controlled by a weight slope. Vertical speed is enduring everywhere in the field stream. It implies v=vw=constant. Answer for little and huge Reynolds number is talk about and the diagram of speed profile for stream including parallel permeable plate with base infusion and top suction through a rakish speed Ω has been considered


2021 ◽  
Author(s):  
Takashi Hotta

Abstract The minimum entropy theorem of the several fields is well known, but there is no clear review that it shows the possibility of minimum entropy theorem mainly rules the general viscous fluid flow field. In this article, I define appropriately total external energy function and is resolved by variational method, and shows that stationary condition always satisfies the continuity and general Navier-Stokes equations. So on that condition, the minimum entropy theorem could decide directly the general viscous fluid flow field.


Sign in / Sign up

Export Citation Format

Share Document