scholarly journals Finite-amplitude steady waves in plane viscous shear flows

1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.

1991 ◽  
Vol 113 (4) ◽  
pp. 608-616 ◽  
Author(s):  
H. M. Jang ◽  
J. A. Ekaterinaris ◽  
M. F. Platzer ◽  
T. Cebeci

Two methods are described for calculating pressure distributions and boundary layers on blades subjected to low Reynolds numbers and ramp-type motion. The first is based on an interactive scheme in which the inviscid flow is computed by a panel method and the boundary layer flow by an inverse method that makes use of the Hilbert integral to couple the solutions of the inviscid and viscous flow equations. The second method is based on the solution of the compressible Navier–Stokes equations with an embedded grid technique that permits accurate calculation of boundary layer flows. Studies for the Eppler-387 and NACA-0012 airfoils indicate that both methods can be used to calculate the behavior of unsteady blade boundary layers at low Reynolds numbers provided that the location of transition is computed with the en method and the transitional region is modeled properly.


2014 ◽  
Vol 752 ◽  
pp. 602-625 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

AbstractOur concern in this paper is with high-Reynolds-number nonlinear equilibrium solutions of the Navier–Stokes equations for boundary-layer flows. Here we consider the asymptotic suction boundary layer (ASBL) which we take as a prototype parallel boundary layer. Solutions of the equations of motion are obtained using a homotopy continuation from two known types of solutions for plane Couette flow. At high Reynolds numbers, it is shown that the first type of solution takes the form of a vortex–wave interaction (VWI) state, see Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666), and is located in the main part of the boundary layer. On the other hand, here the second type is found to support an equilibrium solution of the unit-Reynolds-number Navier–Stokes equations in a layer located a distance of $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}O(\ln \mathit{Re})$ from the wall. Here $\mathit{Re}$ is the Reynolds number based on the free-stream speed and the unperturbed boundary-layer thickness. The streaky field produced by the interaction grows exponentially below the layer and takes its maximum size within the unperturbed boundary layer. The results suggest the possibility of two distinct types of streaky coherent structures existing, possibly simultaneously, in disturbed boundary layers.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


2008 ◽  
Vol 614 ◽  
pp. 315-327 ◽  
Author(s):  
UWE EHRENSTEIN ◽  
FRANÇOIS GALLAIRE

A separated boundary-layer flow at the rear of a bump is considered. Two-dimensional equilibrium stationary states of the Navier–Stokes equations are determined using a nonlinear continuation procedure varying the bump height as well as the Reynolds number. A global instability analysis of the steady states is performed by computing two-dimensional temporal modes. The onset of instability is shown to be characterized by a family of modes with localized structures around the reattachment point becoming almost simultaneously unstable. The optimal perturbation analysis, by projecting the initial disturbance on the set of temporal eigenmodes, reveals that the non-normal modes are able to describe localized initial perturbations associated with the large transient energy growth. At larger time a global low-frequency oscillation is found, accompanied by a periodic regeneration of the flow perturbation inside the bubble, as the consequence of non-normal cancellation of modes. The initial condition provided by the optimal perturbation analysis is applied to Navier–Stokes time integration and is shown to trigger the nonlinear ‘flapping’ typical of separation bubbles. It is possible to follow the stationary equilibrium state on increasing the Reynolds number far beyond instability, ruling out for the present flow case the hypothesis of some authors that topological flow changes are responsible for the ‘flapping’.


Author(s):  
Marc Bolinches-Gisbert ◽  
David Cadrecha Robles ◽  
Roque Corral ◽  
Fernando Gisbert

Abstract A comprehensive comparison between Implicit Large Eddy Simulations (ILES) and experimental results of a modern highlift low-pressure turbine airfoil has been carried out for an array of Reynolds numbers (Re). Experimental data were obtained in a low-speed linear cascade at the Polithecnic University of Madrid using hot-wire anemometry and LDV. The numerical code is fourth order accurate, both in time and space. The spatial discretization of the compressible Navier-Stokes equations is based on a high-order Flux Reconstruction approach while a fourth order Runge-Kutta method is used to march in time the simulations. The losses, pressure coefficient distributions, and boundary layer and wake velocity profiles have been compared for an array of realistic Reynolds numbers. Moreover, boundary layer and wake velocity fluctuations are compared for the first time with experimental results. It is concluded that the accuracy of the numerical results is comparable to that of the experiments, especially for integral quantities such as the losses or exit angle. Turbulent fluctuations in the suction side boundary layer and the wakes are well predicted also. The elapsed time of the is about 140 hours on 40 Graphics Processor Units. The numerical tool is integrated within an industrial design system and reuses pre- and post-processing tools previously developed for another kind of applications. The trend of the losses with the Reynolds number has a sub-critical regime, where the losses scale with Re−1, and a supercrital regime, where the losses scale with Re−1/2. This trend can be seen both, in the simulations and the experiments.


2002 ◽  
Vol 451 ◽  
pp. 35-97 ◽  
Author(s):  
S. JONATHAN CHAPMAN

Certain laminar flows are known to be linearly stable at all Reynolds numbers, R, although in practice they always become turbulent for sufficiently large R. Other flows typically become turbulent well before the critical Reynolds number of linear instability. One resolution of these paradoxes is that the domain of attraction for the laminar state shrinks for large R (as Rγ say, with γ < 0), so that small but finite perturbations lead to transition. Trefethen et al. (1993) conjectured that in fact γ <−1. Subsequent numerical experiments by Lundbladh, Henningson & Reddy (1994) indicated that for streamwise initial perturbations γ =−1 and −7/4 for plane Couette and plane Poiseuille flow respectively (using subcritical Reynolds numbers for plane Poiseuille flow), while for oblique initial perturbations γ =−5/4 and −7/4 Here, through a formal asymptotic analysis of the Navier–Stokes equations, it is found that for streamwise initial perturbations γ =−1 and −3/2 for plane Couette and plane Poiseuille flow respectively (factoring out the unstable modes for plane Poiseuille flow), while for oblique initial perturbations γ =−1 and −5/4. Furthermore it is shown why the numerically determined threshold exponents are not the true asymptotic values.


1990 ◽  
Vol 220 ◽  
pp. 459-484 ◽  
Author(s):  
H. M. Badr ◽  
M. Coutanceau ◽  
S. C. R. Dennis ◽  
C. Ménard

The unsteady flow past a circular cylinder which starts translating and rotating impulsively from rest in a viscous fluid is investigated both theoretically and experimentally in the Reynolds number range 103 [les ] R [les ] 104 and for rotational to translational surface speed ratios between 0.5 and 3. The theoretical study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations while the experimental investigation is based on visualization of the flow using very fine suspended particles. The object of the study is to examine the effect of increase of rotation on the flow structure. There is excellent agreement between the numerical and experimental results for all speed ratios considered, except in the case of the highest rotation rate. Here three-dimensional effects become more pronounced in the experiments and the laminar flow breaks down, while the calculated flow starts to approach a steady state. For lower rotation rates a periodic structure of vortex evolution and shedding develops in the calculations which is repeated exactly as time advances. Another feature of the calculations is the discrepancy in the lift and drag forces at high Reynolds numbers resulting from solving the boundary-layer limit of the equations of motion rather than the full Navier–Stokes equations. Typical results are given for selected values of the Reynolds number and rotation rate.


2002 ◽  
Vol 465 ◽  
pp. 99-130 ◽  
Author(s):  
A. V. OBABKO ◽  
K. W. CASSEL

Numerical solutions of the unsteady Navier–Stokes equations are considered for the flow induced by a thick-core vortex convecting along a surface in a two-dimensional incompressible flow. The presence of the vortex induces an adverse streamwise pressure gradient along the surface that leads to the formation of a secondary recirculation region followed by a narrow eruption of near-wall fluid in solutions of the unsteady boundary-layer equations. The locally thickening boundary layer in the vicinity of the eruption provokes an interaction between the viscous boundary layer and the outer inviscid flow. Numerical solutions of the Navier–Stokes equations show that the interaction occurs on two distinct streamwise length scales depending upon which of three Reynolds-number regimes is being considered. At high Reynolds numbers, the spike leads to a small-scale interaction; at moderate Reynolds numbers, the flow experiences a large-scale interaction followed by the small-scale interaction due to the spike; at low Reynolds numbers, large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. The large-scale interaction is found to play an essential role in determining the overall evolution of unsteady separation in the moderate-Reynolds-number regime; it accelerates the spike formation process and leads to formation of secondary recirculation regions, splitting of the primary recirculation region into multiple corotating eddies and ejections of near-wall vorticity. These eddies later merge prior to being lifted away from the surface and causing detachment of the thick-core vortex.


1975 ◽  
Vol 69 (4) ◽  
pp. 803-823 ◽  
Author(s):  
Masaru Kiya ◽  
Mikio Arie

Numerical solutions of the Navier-Stokes equations are presented for two-dimensional viscous flow past semicircular and semielliptical projections attached to a plane wall on which a laminar boundary layer has developed. Since the major axis is in the direction normal to the wall and is chosen to be twenty times as long as the minor axis in the present case, the flow around the semielliptical projection will approximately correspond to that around a normal flat plate. It is assumed that the height of each obstacle is so small in comparison with the local boundary-layer thickness that the approaching flow can be approximated by a uniform shear flow. Numerical solutions are obtained for the range 0·1-100 of the Reynolds number, which is defined in terms of the undisturbed approaching velocity at the top of the obstacle and its height. The geometrical shapes of the front and rear standing vortices, the drag coefficients and the pressure and shear-stress distributions are presented as functions of the Reynolds number. The computed results are discussed in connexion with the data already obtained in the other theoretical solutions and an experimental observation.


2015 ◽  
Vol 777 ◽  
pp. 219-244 ◽  
Author(s):  
Jesse T. Ault ◽  
Kevin K. Chen ◽  
Howard A. Stone

Direct numerical simulations were used to investigate the downstream decay of fully developed flow in a $180^{\circ }$ curved pipe that exits into a straight outlet. The flow is studied for a range of Reynolds numbers and pipe-to-curvature radius ratios. Velocity, pressure and vorticity fields are calculated to visualize the downstream decay process. Transition ‘decay’ lengths are calculated using the norm of the velocity perturbation from the Hagen–Poiseuille velocity profile, the wall-averaged shear stress, the integral of the magnitude of the vorticity, and the maximum value of the $Q$-criterion on a cross-section. Transition lengths to the fully developed Poiseuille distribution are found to have a linear dependence on the Reynolds number with no noticeable dependence on the pipe-to-curvature radius ratio, despite the flow’s dependence on both parameters. This linear dependence of Reynolds number on the transition length is explained by linearizing the Navier–Stokes equations about the Poiseuille flow, using the form of the fully developed Dean flow as an initial condition, and using appropriate scaling arguments. We extend our results by comparing this flow recovery downstream of a curved pipe to the flow recovery in the downstream outlets of a T-junction flow. Specifically, we compare the transition lengths between these flows and document how the transition lengths depend on the Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document