Rayleigh-Bénard convection in an intermediate-aspect-ratio rectangular container

1986 ◽  
Vol 163 ◽  
pp. 195-226 ◽  
Author(s):  
Paul Kolodner ◽  
R. W. Walden ◽  
A. Passner ◽  
C. M. Surko

We report a study of the flow patterns associated with Rayleigh—Bénard convection in rectangular containers of approximate proportions 10 × 5 × 1 at Prandtl numbers σ between 2 and 20. The flow is studied at Rayleigh numbers ranging from the onset of convective flow to the onset of time dependence; Nusselt-number measurements are also presented. The results are discussed in the content of the theory for the stability of a laterally infinite system of parallel rolls. We observed transitions between time-independent flow patterns which depend on roll wavenumber, Rayleigh number and Prandtl number in a manner that is reasonably well described by this theory. For σ [lsim ] 10, the skewed-varicose instability (which leads directly to time dependence in much larger containers) is found to initiate transitions between time-independent patterns. We are then able to study the approach to time dependence in a regime of larger Rayleigh number where the instabilities in the flow are found to have an intrinsic time dependence. In this regime, the onset of time dependence appears to be explained by the recent predictions of Bolton, Busse & Clever for a new set of time-dependent instabilities.

A recent study by Cross et al . (1980) has described a class of finite-amplitude phase-winding solutions of the problem of two-dimensional Rayleigh-Bénard convection in a shallow fluid layer of aspect ratio 2 L (≫ 1) confined laterally by rigid side-walls. These solutions arise at Rayleigh numbers R = R 0 + O ( L -1 ) where R 0 is the critical Rayleigh number for the corresponding infinite layer. Nonlinear solutions of constant phase exist for Rayleigh numbers R = R 0 + O ( L -2 ) but of these only the two that bifurcate at the lowest value of R are stable to two-dimensional linearized disturbances in this range (Daniels 1978). In the present paper one set of the class of phase-winding solutions is found to be stable to two-dimensional disturbances. For certain values of the Prandtl number of the fluid and for stress-free horizontal boundaries the results predict that to preserve stability there must be a continual readjustment of the roll pattern as the Rayleigh number is raised, with a corresponding increase in wavelength proportional to R - R 0 . These solutions also exhibit hysteresis as the Rayleigh number is raised and lowered. For other values of the Prandtl number the number of rolls remains unchanged as the Rayleigh number is raised, and the wavelength remains close to its critical value. It is proposed that the complete evolution of the flow pattern from a static state must take place on a number of different time scales of which t = O(( R - R 0 ) -1 ) and t = O(( R - R 0 ) -2 ) are the most significant. When t = O(( R - R 0 ) -1 ) the amplitude of convection rises from zero to its steady-state value, but the final lateral positioning of the rolls is only completed on the much longer time scale t = O(( R - R 0 ) -2 ).


2015 ◽  
Vol 785 ◽  
pp. 270-282 ◽  
Author(s):  
L. Skrbek ◽  
P. Urban

An important question in turbulent Rayleigh–Bénard convection is the scaling of the Nusselt number with the Rayleigh number in the so-called ultimate state, corresponding to asymptotically high Rayleigh numbers. A related but separate question is whether the measurements support the so-called Kraichnan law, according to which the Nusselt number varies as the square root of the Rayleigh number (modulo a logarithmic factor). Although there have been claims that the Kraichnan regime has been observed in laboratory experiments with low aspect ratios, the totality of existing experimental results presents a conflicting picture in the high-Rayleigh-number regime. We analyse the experimental data to show that the claims on the ultimate state leave open an important consideration relating to non-Oberbeck–Boussinesq effects. Thus, the nature of scaling in the ultimate state of Rayleigh–Bénard convection remains open.


2012 ◽  
Vol 22 (05) ◽  
pp. 1230018 ◽  
Author(s):  
SUPRIYO PAUL ◽  
MAHENDRA K. VERMA ◽  
PANKAJ WAHI ◽  
SANDEEP K. REDDY ◽  
KRISHNA KUMAR

We investigate the origin of various convective patterns for Prandtl number P = 6.8 (for water at room temperature) using bifurcation diagrams that are constructed using direct numerical simulations (DNS) of Rayleigh–Bénard convection (RBC). Several complex flow patterns resulting from normal bifurcations as well as various instances of "crises" have been observed in the DNS. "Crises" play vital roles in determining various convective flow patterns. After a transition of conduction state to convective roll states, we observe time-periodic and quasiperiodic rolls through Hopf and Neimark–Sacker bifurcations at r ≃ 80 and r ≃ 500 respectively (where r is the normalized Rayleigh number). The system becomes chaotic at r ≃ 750, and the size of the chaotic attractor increases at r ≃ 840 through an "attractor-merging crisis" which results in traveling chaotic rolls. For 846 ≤ r ≤ 849, stable fixed points and a chaotic attractor coexist as a result of an inverse subcritical Hopf bifurcation. Subsequently the chaotic attractor disappears through a "boundary crisis" and only stable fixed points remain. These fixed points later become periodic and chaotic through another set of bifurcations which ultimately leads to turbulence. As a function of Rayleigh number, |W101| ~ (r - 1)0.62 and |θ101| ~ (r - 1)-0.34 (velocity and temperature Fourier coefficient for (1, 0, 1) mode). However the Nusselt number scales as (r - 1)0.33.


1988 ◽  
Vol 190 ◽  
pp. 451-469 ◽  
Author(s):  
D. R. Jenkins

The relationship between observations of cellular Rayleigh-Bénard convection using shadowgraphs and theoretical expressions for convection planforms is considered. We determine the shadowgraphs that ought to be observed if the convection is as given by theoretical expressions for roll, square or hexagonal planforms and compare them with actual experiments. Expressions for the planforms derived from linear theory, valid for low supercritical Rayleigh number, produce unambiguous shadowgraphs consisting of cells bounded by bright lines, which correspond to surfaces through which no fluid flows and on which the vertical component of velocity is directed downwards. Dark spots at the centre of cells, indicating regions of hot, rising fluid, are not accounted for by linear theory, but can be produced by adding higher-order terms, predominantly due to the temperature dependence of a material property of the fluid, such as its viscosity.


2018 ◽  
Vol 841 ◽  
pp. 825-850 ◽  
Author(s):  
Chong Shen Ng ◽  
Andrew Ooi ◽  
Detlef Lohse ◽  
Daniel Chung

Previous numerical studies on homogeneous Rayleigh–Bénard convection, which is Rayleigh–Bénard convection (RBC) without walls, and therefore without boundary layers, have revealed a scaling regime that is consistent with theoretical predictions of bulk-dominated thermal convection. In this so-called asymptotic regime, previous studies have predicted that the Nusselt number ($\mathit{Nu}$) and the Reynolds number ($\mathit{Re}$) vary with the Rayleigh number ($\mathit{Ra}$) according to $\mathit{Nu}\sim \mathit{Ra}^{1/2}$ and $\mathit{Re}\sim \mathit{Ra}^{1/2}$ at small Prandtl numbers ($\mathit{Pr}$). In this study, we consider a flow that is similar to RBC but with the direction of temperature gradient perpendicular to gravity instead of parallel to it; we refer to this configuration as vertical natural convection (VC). Since the direction of the temperature gradient is different in VC, there is no exact relation for the average kinetic dissipation rate, which makes it necessary to explore alternative definitions for $\mathit{Nu}$, $\mathit{Re}$ and $\mathit{Ra}$ and to find physical arguments for closure, rather than making use of the exact relation between $\mathit{Nu}$ and the dissipation rates as in RBC. Once we remove the walls from VC to obtain the homogeneous set-up, we find that the aforementioned $1/2$-power-law scaling is present, similar to the case of homogeneous RBC. When focusing on the bulk, we find that the Nusselt and Reynolds numbers in the bulk of VC too exhibit the $1/2$-power-law scaling. These results suggest that the $1/2$-power-law scaling may even be found at lower Rayleigh numbers if the appropriate quantities in the turbulent bulk flow are employed for the definitions of $\mathit{Ra}$, $\mathit{Re}$ and $\mathit{Nu}$. From a stability perspective, at low- to moderate-$\mathit{Ra}$, we find that the time evolution of the Nusselt number for homogenous vertical natural convection is unsteady, which is consistent with the nature of the elevator modes reported in previous studies on homogeneous RBC.


Sign in / Sign up

Export Citation Format

Share Document