Moving loads on ice plates of finite thickness

1991 ◽  
Vol 226 ◽  
pp. 37-61 ◽  
Author(s):  
J. Strathdee ◽  
W. H. Robinson ◽  
E. M. Haines

The response of a floating ice plate to a moving load is given in terms of a pair of Green's functions. General expressions for these Green's functions are derived for the case of an infinite isotropic plate of uniform thickness supported on a fluid base of uniform depth. The distributions of stress and strain in the vicinity of a concentrated load receive significant contributions from waves of length comparable with the plate thickness and their description necessitates an exact description of thickness effects. Circumstances in which the classical thin-plate theory can be recovered are discussed. The steady-state response to a uniformly moving load displays a so-called ‘critical’ behaviour for load velocities in the neighbourhood of a threshold value at which radiation commences. At the critical speed the amplitude is limited by dissipative forces in the ice plate. To describe this a simple viscoelastic term is included in our model. Calculations indicate that thin-plate theory is accurate to within 5% for distances greater than twenty times the ice thickness.

Author(s):  
Giovanni Tocci Monaco ◽  
Nicholas Fantuzzi ◽  
Francesco Fabbrocino ◽  
Raimondo Luciano

AbstractIn this work, the bending behavior of nanoplates subjected to both sinusoidal and uniform loads in hygrothermal environment is investigated. The present plate theory is based on the classical laminated thin plate theory with strain gradient effect to take into account the nonlocality present in the nanostructures. The equilibrium equations have been carried out by using the principle of virtual works and a system of partial differential equations of the sixth order has been carried out, in contrast to the classical thin plate theory system of the fourth order. The solution has been obtained using a trigonometric expansion (e.g., Navier method) which is applicable to simply supported boundary conditions and limited lamination schemes. The solution is exact for sinusoidal loads; nevertheless, convergence has to be proved for other load types such as the uniform one. Both the effect of the hygrothermal loads and lamination schemes (cross-ply and angle-ply nanoplates) on the bending behavior of thin nanoplates are studied. Results are reported in dimensionless form and validity of the present methodology has been proven, when possible, by comparing the results to the ones from the literature (available only for cross-ply laminates). Novel applications are shown both for cross- and angle-ply laminated which can be considered for further developments in the same topic.


1955 ◽  
Vol 6 (3) ◽  
pp. 196-204 ◽  
Author(s):  
D. E. R. Godfrey

SummaryThe equations of thin plate theory are expressed in polar co-ordinates and transformed using the Mellin transform. Problems involving discontinuous and isolated normal loadings may then be solved in the case of the built-in or freely supported wedge-shaped boundary.


2020 ◽  
Vol 20 (09) ◽  
pp. 2050107
Author(s):  
Iqbal Kaur ◽  
Parveen Lata ◽  
Kulvinder Singh

This study deals with a novel model of forced flexural vibrations in a transversely isotropic thermoelastic thin rectangular plate (TRP) due to time harmonic concentrated load. The mathematical model is prepared for the thin plate in a closed form with the application of Kirchhoff’s love plate theory for nonlocal generalized thermoelasticity with Green–Naghdi (GN)-III theory of thermoelasticity. The nonlocal thin plate has a nonlocal parameter to depict small-scale effect. The double finite Fourier transform technique has been used to find the expressions for lateral deflection, thermal moment and temperature distribution for simply supported (SS) thin rectangular plate in the transformed domain. The effect of classical thermoelasticity (CTE) theory of thermoelasticity and nonlocal parameters has been shown on the computed quantities. Few particular cases have also been deduced.


Author(s):  
Dingwu Xia ◽  
R. Cengiz Ertekin

The transient response of a two-dimensional floating runway subject to dynamic moving load due to airplane landing and take-off is studied in this paper. This hydroelastic problem is formulated by directly coupling the structure with fluid, by use of the Level I Green-Naghdi theory for the fluid motion and the Kirchhoff thin plate theory for the runway. The coupled fluid-structure system, together with the appropriate jump conditions are solved by the finite difference method. The results, including hydroelastic deformation of the runway and the drag force on the airplane are predicted and compared with the available results. Favorable agreements are observed. Parametric studies are carried out to identify the important factors for the design of floating runways.


2011 ◽  
Vol 08 (04) ◽  
pp. 813-824 ◽  
Author(s):  
X. Y. CUI ◽  
S. LIN ◽  
G. Y. LI

This paper presents a thin plate formulation with nodal integration for bending analysis using three-node triangular cells and linear interpolation functions. The formulation was based on the classic thin plate theory, in which only deflection field was required and dealt with as the field variables. They were assumed to be piecewisely linear and expressed using a set of three-node triangular cells. Based on each node, the integration domain has been further derived, where the curvature in the domain was computed using a gradient smoothing technique (GST). As a result, the curvature in each integration domain is a constant whereby the deflection is compatible in the whole problem domain. The generalized smoothed Galerkin weak form is then used to create the discretized system equations where the system stiffness is obtained using simple summation operation. The essential rotational boundary conditions are imposed in the process of constructing the curvature field in conjunction with imposing the translational boundary conditions in the same way as undertaken in the standard FEM. A number of numerical examples were studied using the present formulation, including both static and free vibration analyses. The numerical results were compared with the reference ones together with those shown in the state-of-art literatures published. Very good accuracy has been achieved using the present method.


An approximate method is given for solving the potential problem for a thin plate. The solution is shown to be the first term of an asymptotic expansion in powers of the plate thickness, uniformly valid throughout the plate.


Sign in / Sign up

Export Citation Format

Share Document