Infragravity waves induced by short-wave groups

1993 ◽  
Vol 247 ◽  
pp. 551-588 ◽  
Author(s):  
Hemming A. Schäffer

A theoretical model for infragravity waves generated by incident short-wave groups is developed. Both normal and oblique short-wave incidence is considered. The depth-integrated conservation equations for mass and momentum averaged over a short-wave period are equivalent to the nonlinear shallow-water equations with a forcing term. In linearized form these equations combine to a second-order long-wave equation including forcing, and this is the equation we solve. The forcing term is expressed in terms of the short-wave radiation stress, and the modelling of these short waves in regard to their breaking and dynamic surf zone behaviour is essential. The model takes into account the time-varying position of the initial break point as well as a (partial) transmission of grouping into the surf zone. The former produces a dynamic set-up, while the latter is equivalent to the short-wave forcing that takes place outside the surf zone. These two effects have a mutual dependence which is modelled by a parameter K, and their relative strength is estimated. Before the waves break, the standard assumption of energy conservation leads to a variation of the radiation stress, which causes a bound, long wave, and the shoaling bottom results in a modification of the solution known for constant depth. The respective effects of this incident bound, long wave and of oscillations of the break-point position are shown to be of the same order of magnitude, and they oppose each other to some extent. The transfer of energy from the short waves to waves at infragravity frequencies is analysed using the depth-integrated conservation equation of energy. For the case of normally incident groups a semi-analytical steady-state solution for the infragravity wave motion is given for a plane beach and small primary-wave modulations. Examples of the resulting surface elevation as well as the corresponding particle velocity and mean infragravity-wave energy flux are presented. Also the sensitivity to the variation of input parameters is analysed. The model results are compared with laboratory experiments from the literature. The qualitative agreement is good, but quantitatively the model overestimates the infragravity wave activity. This can, in part, be attributed to the neglect of frictional effects.

Author(s):  
K. A. Belibassakis

The free long-wave generation by short-wave groups over a sloping bottom is studied both experimentally and theoretically by various authors showing important results concerning the modelling of energy transfer from the short waves to subharmonics. In the present work, the coupled-mode model developed by Athanassoulis & Belibassakis (1999) for the propagation of water waves over variable bathymetry regions, as generalized to include dissipation due to bottom friction and breaking effects, is applied to calculate the spatial evolution of short-wave groups propagating over a shoaling area, characterized by general bottom topography. Following Scha¨ffer (1993), the present model is appropriately modified in the surf zone in order to destroy the short-wave modulation, keeping the wave height decay in proportion to the local water-depth, and is then used to calculate radiation stresses associated with shoaling and breaking of short-wave groups in the area of general bathymetry and in the surf zone. Subsequently, the system of long wave equations, corresponding to zero (set-down/set-up) and first few harmonics, forced by the radiation stresses, is numerically solved. Results are presented showing that the present model provides reasonable predictions, supporting the study of infragravity waves induced by shortwave groups and their effects on harbors and mooring systems of large vessel operating in nearshore/coastal regions.


1994 ◽  
Vol 259 ◽  
pp. 125-148 ◽  
Author(s):  
Hemming A. Schäuffer

On the basis of the theory for infragravity waves induced by short-wave groups developed by Schäffer (1993), three-dimensional infragravity waves are analysed. The theory relies on the linearized depth-integrated conservation equations for mass and momentum combined to give a second-order long-wave equation with forcing expressions in terms of the radiation stress. This forcing gives a dynamic set-up originating from oscillations of the break-point position and a dynamic set-down bound to the short-wave groups. For small angles of incidence leaky-mode solutions are found while trapped modes appear when the primary waves are sufficiently oblique. In the latter case resonant edge-wave excitation may occur. A semi-analytical steady-state solution for the infragravity motion is presented. The solution is restricted to periodicity along a plane beach connected to a shelf and valid only for small primary-wave modulations.


1988 ◽  
Vol 1 (21) ◽  
pp. 79 ◽  
Author(s):  
Hemming A. Schaffer ◽  
Ib A. Svendsen

Two dimensional generation of surf beats by incident wave groups is examined theoretically. An inhomogeneous wave equation describes the amplitude of the surf beat wave. The forcing function is the modulation of the radiation stress. The short waves are amplitude modulated both outside and inside the surf zone causing the long wave generation to continue right to the shore line. Resonant generation as shallow water is approached is included. The analytical solution is evaluated numerically and shows a highly complicated amplitude variation of the surf beat depending on the parameters of the problem.


2012 ◽  
Vol 1 (33) ◽  
pp. 28 ◽  
Author(s):  
Marion Tissier ◽  
Philippe Bonneton ◽  
Gerben Ruessink ◽  
Fabien Marche ◽  
Florent Chazel ◽  
...  

Recent field studies over low sloping beaches have shown that infragravity waves could dissipate a significant part of their energy in the inner surf zone. This phenomenon and the associated short- and long-wave transformations are not well-understood. In this paper, we assess the ability of the fully nonlinear Boussinesq-type model introduced in Bonneton et al. (2011) to reproduce short and long wave transformation in a case involving a strong infragravity wave dissipation close to the shoreline. This validation study, based on van Dongeren et al. (2008)’s laboratory experiments, suggests that the model is able to predict infragravity wave breaking as well as the complex interactions between short and long waves in the surf zone.


Author(s):  
T.E Baldock

This paper presents new laboratory data on the generation of long waves by the shoaling and breaking of transient-focused short-wave groups. Direct offshore radiation of long waves from the breakpoint is shown experimentally for the first time. High spatial resolution enables identification of the relationship between the spatial gradients of the short-wave envelope and the long-wave surface. This relationship is consistent with radiation stress theory even well inside the surf zone and appears as a result of the strong nonlinear forcing associated with the transient group. In shallow water, the change in depth across the group leads to asymmetry in the forcing which generates significant dynamic setup in front of the group during shoaling. Strong amplification of the incident dynamic setup occurs after short-wave breaking. The data show the radiation of a transient long wave dominated by a pulse of positive elevation, preceded and followed by weaker trailing waves with negative elevation. The instantaneous cross-shore structure of the long wave shows the mechanics of the reflection process and the formation of a transient node in the inner surf zone. The wave run-up and relative amplitude of the radiated and incident long waves suggests significant modification of the incident bound wave in the inner surf zone and the dominance of long waves generated by the breaking process. It is proposed that these conditions occur when the primary short waves and bound wave are not shallow water waves at the breakpoint. A simple criterion is given to determine these conditions, which generally occur for the important case of storm waves.


2016 ◽  
Vol 810 ◽  
pp. 5-24 ◽  
Author(s):  
M. Hirata ◽  
S. Okino ◽  
H. Hanazaki

Capillary–gravity waves resonantly excited by an obstacle (Froude number: $Fr=1$) are investigated by the numerical solution of the Euler equations. The radiation of short waves from the long nonlinear waves is observed when the capillary effects are weak (Bond number: $Bo<1/3$). The upstream-advancing solitary wave radiates a short linear wave whose phase velocity is equal to the solitary waves and group velocity is faster than the solitary wave (soliton radiation). Therefore, the short wave is observed upstream of the foremost solitary wave. The downstream cnoidal wave also radiates a short wave which propagates upstream in the depression region between the obstacle and the cnoidal wave. The short wave interacts with the long wave above the obstacle, and generates a second short wave which propagates downstream. These generation processes will be repeated, and the number of wavenumber components in the depression region increases with time to generate a complicated wave pattern. The upstream soliton radiation can be predicted qualitatively by the fifth-order forced Korteweg–de Vries equation, but the equation overestimates the wavelength since it is based on a long-wave approximation. At a large Bond number of $Bo=2/3$, the wave pattern has the rotation symmetry against the pattern at $Bo=0$, and the depression solitary waves propagate downstream.


2015 ◽  
Vol 45 (2) ◽  
pp. 589-605 ◽  
Author(s):  
A. T. M. de Bakker ◽  
T. H. C. Herbers ◽  
P. B. Smit ◽  
M. F. S. Tissier ◽  
B. G. Ruessink

AbstractA high-resolution dataset of three irregular wave conditions collected on a gently sloping laboratory beach is analyzed to study nonlinear energy transfers involving infragravity frequencies. This study uses bispectral analysis to identify the dominant, nonlinear interactions and estimate energy transfers to investigate energy flows within the spectra. Energy flows are identified by dividing transfers into four types of triad interactions, with triads including one, two, or three infragravity–frequency components, and triad interactions solely between short-wave frequencies. In the shoaling zone, the energy transfers are generally from the spectral peak to its higher harmonics and to infragravity frequencies. While receiving net energy, infragravity waves participate in interactions that spread energy of the short-wave peaks to adjacent frequencies, thereby creating a broader energy spectrum. In the short-wave surf zone, infragravity–infragravity interactions develop, and close to shore, they dominate the interactions. Nonlinear energy fluxes are compared to gradients in total energy flux and are observed to balance nearly completely. Overall, energy losses at both infragravity and short-wave frequencies can largely be explained by a cascade of nonlinear energy transfers to high frequencies (say, f > 1.5 Hz) where the energy is presumably dissipated. Infragravity–infragravity interactions seem to induce higher harmonics that allow for shape transformation of the infragravity wave to asymmetric. The largest decrease in infragravity wave height occurs close to the shore, where infragravity–infragravity interactions dominate and where the infragravity wave is asymmetric, suggesting wave breaking to be the dominant mechanism of infragravity wave dissipation.


1984 ◽  
Vol 139 ◽  
pp. 219-235 ◽  
Author(s):  
Chiang C. Mei ◽  
Chakib Benmoussa

Unidirectional and periodically modulated short waves on a horizontal or very nearly horizontal bottom are known to be accompanied by long waves which propagate together with the envelope of the short waves at their group velocity. However, for variable depth with a horizontal lengthscale which is not too great compared with the group length, long waves of another kind are further induced. If the variation of depth is only one-dimensional and localized in a finite region, then the additional long waves can radiate away from this region, in directions which differ from those of the short waves and their envelopes. There are also critical depths which define caustics for these new long waves but not for the short waves. Thus, while obliquely incident short waves can pass over a topography, these second-order long waves may be trapped on a ridge or away from a canyon.


Author(s):  
T. J. O'Hare ◽  
T. E. Baldock ◽  
D. A. Huntley ◽  
P. A. D. Bird ◽  
G. N. Bullock

1986 ◽  
Vol 1 (20) ◽  
pp. 38 ◽  
Author(s):  
Jeffrey H. List

Data from a low energy swell-dominated surf zone are examined for indications that observed low frequency motions are simply group-forced bounded long waves. Time series of wave amplitude are compared to filtered long wave records through cross-spectral and cross-correlation analysis. These methods are found to have limited usefulness until long waves are separated into seaward and shoreward components. Then a clear picture of a rapidly shoaling bounded long wave emerges, with a minimum of nearly one fourth of the long wave amplitude being explainable by this type of motion close to shore. Through the zone in which waves were breaking, and incident wave amplitude variability decreased by 50%, the contribution from the bounded long wave continued to increase at a rate much greater than a simple shoaling effect. Also present are clear signs that this amplified bounded long wave is reflected from a position close to the shoreline, and is thus released from wave groups as a free, offshore-progressive wave.


Sign in / Sign up

Export Citation Format

Share Document