long waves
Recently Published Documents


TOTAL DOCUMENTS

1031
(FIVE YEARS 90)

H-INDEX

58
(FIVE YEARS 5)

MAUSAM ◽  
2022 ◽  
Vol 53 (1) ◽  
pp. 1-8
Author(s):  
S. M. BAWISKAR ◽  
M. D. CHIPADE ◽  
S. S. SINGH

Energetics of lower tropospheric zonal waves during onset, established and withdrawal  phases of monsoon have been studied for 1994, 1995 and 1996.  The analysis show that energetics of wave 0 over R1 (10°S-10°N), long waves (waves 1-2) over R2 (10°N - 30°S) and  short waves (waves 3-10) over R3 (30° N - 50° N)  influence the monsoon activity over India on intra-seasonal scale.   The weekly analysis of the energetics of zonal waves indicates that the momentum transport of wave 0 over latitudinal belt  L0 (12° S - 3° N),  wave 1 over the belt L1(10° N - 15° N)  and wave 2 over the belt  L2 (33° N - 45° N) is related to all India  rainfall on a weekly scale.  Larger southward momentum transport of wave 0  over L0 and larger northward momentum transport of wave 1  over L1 and wave 2 over L2 enhance the monsoon activity over India.


2021 ◽  
Vol 15 (12) ◽  
pp. 5557-5575
Author(s):  
Joey J. Voermans ◽  
Qingxiang Liu ◽  
Aleksey Marchenko ◽  
Jean Rabault ◽  
Kirill Filchuk ◽  
...  

Abstract. Observations of wave dissipation and dispersion in sea ice are a necessity for the development and validation of wave–ice interaction models. As the composition of the ice layer can be extremely complex, most models treat the ice layer as a continuum with effective, rather than independently measurable, properties. While this provides opportunities to fit the model to observations, it also obscures our understanding of the wave–ice interactive processes; in particular, it hinders our ability to identify under which environmental conditions these processes are of significance. Here, we aimed to reduce the number of free variables available by studying wave dissipation in landfast ice. That is, in continuous sea ice, such as landfast ice, the effective properties of the continuum ice layer should revert to the material properties of the ice. We present observations of wave dispersion and dissipation from a field experiment on landfast ice in the Arctic and Antarctic. Independent laboratory measurements were performed on sea ice cores from a neighboring fjord in the Arctic to estimate the ice viscosity. Results show that the dispersion of waves in landfast ice is well described by theory of a thin elastic plate, and such observations could provide an estimate of the elastic modulus of the ice. Observations of wave dissipation in landfast ice are about an order of magnitude larger than in ice floes and broken ice. Comparison of our observations against models suggests that wave dissipation is attributed to the viscous dissipation within the ice layer for short waves only, whereas turbulence generated through the interactions between the ice and waves is the most likely process for the dissipation of wave energy for long periods. The separation between short and long waves in this context is expected to be determined by the ice thickness through its influence on the lengthening of short waves. Through the comparison of the estimated wave attenuation rates with distance from the landfast ice edge, our results suggest that the attenuation of long waves is weaker in comparison to short waves, but their dependence on wave energy is stronger. Further studies are required to measure the spatial variability of wave attenuation and measure turbulence underneath the ice independently of observations of wave attenuation to confirm our interpretation of the results.


2021 ◽  
pp. 35-72
Author(s):  
Robert Guttmann
Keyword(s):  

2021 ◽  
Vol 144 (5) ◽  
pp. 96-101
Author(s):  
Viktor Yu. Tatuzov ◽  

The author suggests a non-customary approach to the study and forecasting of the Foreign Direct Investment (FDI) and the Global Value Chains (GVC) — within the modern framework of Kondratieff long waves hypothesis. Taking into account long waves (about 40 years), in 2009 the author warned about the possible economic crises in Russia in 2014–2015,2020 and such crises actually happened. There were three economic crises in Russia — 40 years after the world economic crises of 1969, 1974–1975 and 1980. The question is raised about the large-scale spread of COVID-19. Also the author concludes that it is necessary to continue studying long waves approach with the aim of its use in forecasting.


Author(s):  
Antoine Villefer ◽  
Michel Benoit ◽  
Damien Violeau ◽  
Christopher Luneau ◽  
Hubert Branger

AbstractA series of experiments were conducted in a wind-wave tank facility in Marseilles (France) to study the effects of preexisting swell conditions (represented by long mechanically-generated waves) on wind-wave growth with fetch. Both monochromatic and irregular (JONSWAP-type) long wave conditions with different values of wave steepness have been generated in the presence of a constant wind forcing, for several wind velocities. A spectral analysis of temporal wave signals combined with airflow measurements allowed to study the evolution of both wave systems with the aim of identifying the interaction mechanisms transportable to prototype scale. In particular, a specific method is used to separate the two wave systems in the measured bimodal spectra. In fetch-limited conditions, pure wind-wave growth is in accordance with anterior experiments, but differs from the prototype scale in terms of energy and frequency variations with fetch. Monochromatic long waves are shown to reduce the energy of the wind-waves significantly, as it was observed in anterior laboratory experiments. The addition of JONSWAP-type long waves instead results in a downshift of the wind-wave peak frequency but no significant energy reduction. Overall, it is observed that the presence of long waves affects the wind-wave energy and frequency variations with fetch. Finally, in the presence of JONSWAP-type long waves, variations of wind-wave energy and peak frequency with fetch appear in close agreement with the wind-wave growth observed at prototype scale both in terms of variations and nondimensional magnitude.


Author(s):  
Tsung-Lin Hsieh ◽  
Chiung-Yin Chang ◽  
Isaac M. Held ◽  
Pablo Zurita-Gotor

AbstractAlthough classical theories of midlatitude momentum fluxes focus on the wave-mean flow interaction, wave-wave interactions may be important for generating long waves. It is shown in this study that this nonlinear generation has implications for eddy momentum fluxes in some regimes. Using a two-layer quasi-geostrophic model of a baroclinic jet on a β-plane, statistically steady states are explored in which the vertically integrated eddy momentum flux is divergent at the center of the jet, rather than convergent as in Earth-like climates. One moves towards this less familiar climate from more Earth-like settings by reducing either β, frictional drag, or the width of the baroclinic zone, or by increasing the upper bound of resolvable wavelengths by lengthening the zonal channel. Even in Earth-like settings, long waves diverge momentum from the jet, but they are too weak to compete with short unstable waves that converge momentum. We argue that long waves are generated by breaking of short unstable waves near their critical latitudes, where long waves converge momentum while diverging momentum at the center of the jet. Quasi-linear models with no wave-wave interaction can qualitatively capture the Earth-like regime but not the regime with momentum flux divergence at the center of the jet, because the nonlinear wave breaking and long wave generation processes are missing. Therefore, a more comprehensive theory of atmospheric eddy momentum fluxes should take into account the nonlinear dynamics of long waves.


Sign in / Sign up

Export Citation Format

Share Document