Plume formation and resonant bifurcations in porous-media convection

1994 ◽  
Vol 272 ◽  
pp. 67-90 ◽  
Author(s):  
Michael D. Graham ◽  
Paul H. Steen

The classical boundary-layer scaling laws proposed by Howard for Rayleigh–Bénard convection at high Rayleigh number extend to the analogous case of convection in saturated porous media. We computationally study two-dimensional porous-media convection near the onset of this scaling behaviour. The main result of the paper is the observation and study of instabilities that lead to deviations from the scaling relations.At Rayleigh numbers below the scaling regime, boundary-layer fluctuations born at a Hopf bifurcation strengthen and eventually develop into thermal plumes. The appearance of plumes corresponds to the onset of the boundary-layer scaling behaviour of the oscillation frequency and mean Nusselt number, in agreement with the classical theory. As the Rayleigh number increases further, the flow undergoes instabilities that lead to ‘bubbles’ in parameter space of quasi-periodic flow, and eventually to weakly chaotic flow. The instabilities disturb the plume formation process, effectively leading to a phase modulation of the process and to deviations from the scaling laws. We argue that these instabilities correspond to parametric resonances between the timescale for plume formation and the characteristic convection timescale of the flow.

2016 ◽  
Vol 805 ◽  
Author(s):  
Kai Leong Chong ◽  
Ke-Qing Xia

We study the effect of severe geometrical confinement in Rayleigh–Bénard convection with a wide range of width-to-height aspect ratio $\unicode[STIX]{x1D6E4}$, $1/128\leqslant \unicode[STIX]{x1D6E4}\leqslant 1$, and Rayleigh number $Ra$, $3\times 10^{4}\leqslant Ra\leqslant 1\times 10^{11}$, at a fixed Prandtl number of $Pr=4.38$ by means of direct numerical simulations in Cartesian geometry with no-slip walls. For convection under geometrical confinement (decreasing $\unicode[STIX]{x1D6E4}$ from 1), three regimes can be recognized (Chong et al., Phys. Rev. Lett., vol. 115, 2015, 264503) based on the global and local properties in terms of heat transport, plume morphology and flow structures. These are Regime I: classical boundary-layer-controlled regime; Regime II: plume-controlled regime; and Regime III: severely confined regime. The study reveals that the transition into Regime III leads to totally different heat and momentum transport scalings and flow topology from the classical regime. The convective heat transfer scaling, in terms of the Nusselt number $Nu$, exhibits the scaling $Nu-1\sim Ra^{0.61}$ over three decades of $Ra$ at $\unicode[STIX]{x1D6E4}=1/128$, which contrasts sharply with the classical scaling $Nu-1\sim Ra^{0.31}$ found at $\unicode[STIX]{x1D6E4}=1$. The flow in Regime III is found to be dominated by finger-like, long-lived plume columns, again in sharp contrast with the mushroom-like, fragmented thermal plumes typically observed in the classical regime. Moreover, we identify a Rayleigh number for regime transition, $Ra^{\ast }=(29.37/\unicode[STIX]{x1D6E4})^{3.23}$, such that the scaling transition in $Nu$ and $Re$ can be clearly demonstrated when plotted against $Ra/Ra^{\ast }$.


2012 ◽  
Vol 711 ◽  
pp. 281-305 ◽  
Author(s):  
J. D. Scheel ◽  
E. Kim ◽  
K. R. White

AbstractWe present the results from numerical simulations of turbulent Rayleigh–Bénard convection for an aspect ratio (diameter/height) of 1.0, Prandtl numbers of 0.4 and 0.7, and Rayleigh numbers from $1\ensuremath{\times} 1{0}^{5} $ to $1\ensuremath{\times} 1{0}^{9} $. Detailed measurements of the thermal and viscous boundary layer profiles are made and compared to experimental and theoretical (Prandtl–Blasius) results. We find that the thermal boundary layer profiles disagree by more than 10 % when scaled with the similarity variable (boundary layer thickness) and likewise disagree with the Prandtl–Blasius results. In contrast, the viscous boundary profiles collapse well and do agree (within 10 %) with the Prandtl–Blasius profile, but with worsening agreement as the Rayleigh number increases. We have also investigated the scaling of the boundary layer thicknesses with Rayleigh number, and again compare to experiments and theory. We find that the scaling laws are very robust with respect to method of analysis and they mostly agree with the Grossmann–Lohse predictions coupled with laminar boundary layer theory within our numerical uncertainty.


2010 ◽  
Vol 664 ◽  
pp. 297-312 ◽  
Author(s):  
QUAN ZHOU ◽  
RICHARD J. A. M. STEVENS ◽  
KAZUYASU SUGIYAMA ◽  
SIEGFRIED GROSSMANN ◽  
DETLEF LOHSE ◽  
...  

The shapes of the velocity and temperature profiles near the horizontal conducting plates' centre regions in turbulent Rayleigh–Bénard convection are studied numerically and experimentally over the Rayleigh number range 108 ≲ Ra ≲ 3 × 1011 and the Prandtl number range 0.7 ≲ Pr ≲ 5.4. The results show that both the temperature and velocity profiles agree well with the classical Prandtl–Blasius (PB) laminar boundary-layer profiles, if they are re-sampled in the respective dynamical reference frames that fluctuate with the instantaneous thermal and velocity boundary-layer thicknesses. The study further shows that the PB boundary layer in turbulent thermal convection not only holds in a time-averaged sense, but is most of the time also valid in an instantaneous sense.


2014 ◽  
Vol 758 ◽  
pp. 344-373 ◽  
Author(s):  
Janet D. Scheel ◽  
Jörg Schumacher

AbstractWe compute fully local boundary layer scales in three-dimensional turbulent Rayleigh–Bénard convection. These scales are directly connected to the highly intermittent fluctuations of the fluxes of momentum and heat at the isothermal top and bottom walls and are statistically distributed around the corresponding mean thickness scales. The local boundary layer scales also reflect the strong spatial inhomogeneities of both boundary layers due to the large-scale, but complex and intermittent, circulation that builds up in closed convection cells. Similar to turbulent boundary layers, we define inner scales based on local shear stress that can be consistently extended to the classical viscous scales in bulk turbulence, e.g. the Kolmogorov scale, and outer scales based on slopes at the wall. We discuss the consequences of our generalization, in particular the scaling of our inner and outer boundary layer thicknesses and the resulting shear Reynolds number with respect to the Rayleigh number. The mean outer thickness scale for the temperature field is close to the standard definition of a thermal boundary layer thickness. In the case of the velocity field, under certain conditions the outer scale follows a scaling similar to that of the Prandtl–Blasius type definition with respect to the Rayleigh number, but differs quantitatively. The friction coefficient $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}c_{\epsilon }$ scaling is found to fall right between the laminar and turbulent limits, which indicates that the boundary layer exhibits transitional behaviour. Additionally, we conduct an analysis of the recently suggested dissipation layer thickness scales versus the Rayleigh number and find a transition in the scaling. All our investigations are based on highly accurate spectral element simulations that reproduce gradients and their fluctuations reliably. The study is done for a Prandtl number of $\mathit{Pr}=0.7$ and for Rayleigh numbers that extend over almost five orders of magnitude, $3\times 10^5\le \mathit{Ra} \le 10^{10}$, in cells with an aspect ratio of one. We also performed one study with an aspect ratio equal to three in the case of $\mathit{Ra}=10^8$. For both aspect ratios, we find that the scale distributions depend on the position at the plates where the analysis is conducted.


2017 ◽  
Vol 830 ◽  
Author(s):  
Pranav Joshi ◽  
Hadi Rajaei ◽  
Rudie P. J. Kunnen ◽  
Herman J. H. Clercx

This experimental study focuses on the effect of horizontal boundaries with pyramid-shaped roughness elements on the heat transfer in rotating Rayleigh–Bénard convection. It is shown that the Ekman pumping mechanism, which is responsible for the heat transfer enhancement under rotation in the case of smooth top and bottom surfaces, is unaffected by the roughness as long as the Ekman layer thickness $\unicode[STIX]{x1D6FF}_{E}$ is significantly larger than the roughness height $k$. As the rotation rate increases, and thus $\unicode[STIX]{x1D6FF}_{E}$ decreases, the roughness elements penetrate the radially inward flow in the interior of the Ekman boundary layer that feeds the columnar Ekman vortices. This perturbation generates additional thermal disturbances which are found to increase the heat transfer efficiency even further. However, when $\unicode[STIX]{x1D6FF}_{E}\approx k$, the Ekman boundary layer is strongly perturbed by the roughness elements and the Ekman pumping mechanism is suppressed. The results suggest that the Ekman pumping is re-established for $\unicode[STIX]{x1D6FF}_{E}\ll k$ as the faces of the pyramidal roughness elements then act locally as a sloping boundary on which an Ekman layer can be formed.


1988 ◽  
Vol 190 ◽  
pp. 451-469 ◽  
Author(s):  
D. R. Jenkins

The relationship between observations of cellular Rayleigh-Bénard convection using shadowgraphs and theoretical expressions for convection planforms is considered. We determine the shadowgraphs that ought to be observed if the convection is as given by theoretical expressions for roll, square or hexagonal planforms and compare them with actual experiments. Expressions for the planforms derived from linear theory, valid for low supercritical Rayleigh number, produce unambiguous shadowgraphs consisting of cells bounded by bright lines, which correspond to surfaces through which no fluid flows and on which the vertical component of velocity is directed downwards. Dark spots at the centre of cells, indicating regions of hot, rising fluid, are not accounted for by linear theory, but can be produced by adding higher-order terms, predominantly due to the temperature dependence of a material property of the fluid, such as its viscosity.


2010 ◽  
Vol 662 ◽  
pp. 409-446 ◽  
Author(s):  
G. SILANO ◽  
K. R. SREENIVASAN ◽  
R. VERZICCO

We summarize the results of an extensive campaign of direct numerical simulations of Rayleigh–Bénard convection at moderate and high Prandtl numbers (10−1 ≤ Pr ≤ 104) and moderate Rayleigh numbers (105 ≤ Ra ≤ 109). The computational domain is a cylindrical cell of aspect ratio Γ = 1/2, with the no-slip condition imposed on all boundaries. By scaling the numerical results, we find that the free-fall velocity should be multiplied by $1/\sqrt{{\it Pr}}$ in order to obtain a more appropriate representation of the large-scale velocity at high Pr. We investigate the Nusselt and the Reynolds number dependences on Ra and Pr, comparing the outcome with previous numerical and experimental results. Depending on Pr, we obtain different power laws of the Nusselt number with respect to Ra, ranging from Ra2/7 for Pr = 1 up to Ra0.31 for Pr = 103. The Nusselt number is independent of Pr. The Reynolds number scales as ${\it Re}\,{\sim}\,\sqrt{{\it Ra}}/{\it Pr}$, neglecting logarithmic corrections. We analyse the global and local features of viscous and thermal boundary layers and their scaling behaviours with respect to Ra and Pr, and with respect to the Reynolds and Péclet numbers. We find that the flow approaches a saturation state when Reynolds number decreases below the critical value, Res ≃ 40. The thermal-boundary-layer thickness increases slightly (instead of decreasing) when the Péclet number increases, because of the moderating influence of the viscous boundary layer. The simulated ranges of Ra and Pr contain steady, periodic and turbulent solutions. A rough estimate of the transition from the steady to the unsteady state is obtained by monitoring the time evolution of the system until it reaches stationary solutions. We find multiple solutions as long-term phenomena at Ra = 108 and Pr = 103, which, however, do not result in significantly different Nusselt numbers. One of these multiple solutions, even if stable over a long time interval, shows a break in the mid-plane symmetry of the temperature profile. We analyse the flow structures through the transitional phases by direct visualizations of the temperature and velocity fields. A wide variety of large-scale circulation and plume structures has been found. The single-roll circulation is characteristic only of the steady and periodic solutions. For other regimes at lower Pr, the mean flow generally consists of two opposite toroidal structures; at higher Pr, the flow is organized in the form of multi-jet structures, extending mostly in the vertical direction. At high Pr, plumes mainly detach from sheet-like structures. The signatures of different large-scale structures are generally well reflected in the data trends with respect to Ra, less in those with respect to Pr.


Sign in / Sign up

Export Citation Format

Share Document