On the stability of large-amplitude geostrophic flows in a two-layer fluid: the case of ‘strong’ beta-effect

1995 ◽  
Vol 284 ◽  
pp. 137-158 ◽  
Author(s):  
E. S. Benilov

This paper examines the stability of two-layer geostrophic flows with large displacement of the interface and strong β-effect. Attention is focused on flows with non-monotonic interface profiles which are not covered by the Rayleigh-style stability theorems proved by Benilov (1992a, b) and Benilov & Cushman-Roisin (1994). For such flows the coefficient of the highest derivative in the corresponding boundary-value problem vanishes at the point where the depth profile has an extremum. Although this singularity is similar to a critical level, it cannot be regularized by the simplistic introduction of infinitesimal viscosity through the assumption that the phase speed of the disturbance is complex. In order to regularize the singularity properly, one should consider the problem within the framework of the original ageostrophic viscous equations and, having obtained the boundary-value problem for harmonic disturbance, take the limit Rossby number → 0, viscosity → 0.The results obtained analytically and (for special cases) numerically indicate that the stability of flows with non-monotonic profiles strongly depends on the depth of the upper layer. If the upper layer is ‘thick’ (i.e. if the average depth H1 of the upper layer is of the order of the total depth of the fluid H0), the stability boundary-value problem does not have any solutions at all, which means stability (however, this stability is structurally unstable, and the flow, generally speaking, can be made weakly unstable by any small effect such as external forcing, viscosity, or ageostrophic corrections). In the case of ‘thin’ upper layer (H1/H0 [lsim ] Ro), the order of the singularity changes and all non-monotonic flows are unstable regardless of their profiles. It is also demonstrated that thin-upper-layer flows do not have to be non-monotonic to be unstable: if u–βR20 (where u is the zonal velocity, β is the β-parameter, and R0 is the deformation radius) changes sign somewhere in the flow, the stability boundary-value problem has another singular point which leads to instability.

2003 ◽  
Vol 475 ◽  
pp. 303-331 ◽  
Author(s):  
E. S. BENILOV

We examine the stability of a quasi-geostrophic vortex in a two-layer ocean with a thin upper layer on the f-plane. It is assumed that the vortex has a sign-definite swirl velocity and is localized in the upper layer, whereas the disturbance is present in both layers. The stability boundary-value problem admits three types of normal modes: fast (upper-layer-dominated) modes, responsible for equivalent-barotropic instability, and two slow baroclinic types (mixed- and lower-layer-dominated modes). Fast modes exist only for unrealistically small vortices (with a radius smaller than half of the deformation radius), and this paper is mainly focused on the slow modes. They are examined by expanding the stability boundary-value problem in powers of the ratio of the upper-layer depth to the lower-layer depth. It is demonstrated that the instability of slow modes, if any, is associated with critical levels, which are located at the periphery of the vortex. The complete (sufficient and necessary) stability criterion with respect to slow modes is derived: the vortex is stable if and only if the potential-vorticity gradient at the critical level and swirl velocity are of the same sign. Several vortex profiles are examined, and it is shown that vortices with a slowly decaying periphery are more unstable baroclinically and less barotropically than those with a fast-decaying periphery, with the Gaussian profile being the most stable overall. The asymptotic results are verified by numerical integration of the exact boundary-value problem, and interpreted using oceanic observations.


We show that a plane region (vortex) of uniform vorticity ω 0 and whose boundary shape is a certain aerofoil is a steady solution of a free-boundary value problem involving the angular velocity and the strain rates of order not exceeding 3 as bifurcation parameters. We also determine the stability of such steady states. Classical results, in this direction, of Kirchhofif and Love are obtained here as special cases.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


1999 ◽  
Vol 42 (2) ◽  
pp. 349-374 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Martin Bohner ◽  
Patricia J. Y. Wong

We consider the following boundary value problemwhere λ > 0 and 1 ≤ p ≤ n – 1 is fixed. The values of λ are characterized so that the boundary value problem has a positive solution. Further, for the case λ = 1 we offer criteria for the existence of two positive solutions of the boundary value problem. Upper and lower bounds for these positive solutions are also established for special cases. Several examples are included to dwell upon the importance of the results obtained.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Huashui Zhan

The paper studies the initial-boundary value problem of a porous medium equation with exponent variable. How to deal with nonlinear term with the exponent variable is the main dedication of this paper. The existence of the weak solution is proved by the monotone convergent method. Moreover, according to the different boundary value conditions, the stability of weak solutions is studied. In some special cases, the stability of weak solutions can be proved without any boundary value condition.


Author(s):  
Qun Chen

AbstractLet M, N be Riemannian manifolds, f: M → N a harmonic map with potential H, namely, a smooth critical point of the functional EH(f) = ∫M[e(f)−H(f)], where e(f) is the energy density of f. Some results concerning the stability of these maps between spheres and any Riemannian manifold are given. For a general class of M, this paper also gives a result on the constant boundary-value problem which generalizes the result of Karcher-Wood even in the case of the usual harmonic maps. It can also be applied to the static Landau-Lifshitz equations.


1967 ◽  
Vol 63 (4) ◽  
pp. 1327-1330 ◽  
Author(s):  
S. Leibovich

AbstractExistence and uniqueness proofs for a boundary-value problem associated with a magnetohydrodynamic Falkner–Skan equation are presented. Relevant special cases of the problem herein considered include the magnetohydrodynamic rear stagnation point flow, and the non-magnetic ‘backward boundary layers’ of Goldstein(2).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Dumitru Baleanu ◽  
Mohammed Said Souid ◽  
Ali Hakem ◽  
Mustafa Inc

AbstractIn the present research study, for a given multiterm boundary value problem (BVP) involving the Riemann-Liouville fractional differential equation of variable order, the existence properties are analyzed. To achieve this aim, we firstly investigate some specifications of this kind of variable-order operators, and then we derive the required criteria to confirm the existence of solution and study the stability of the obtained solution in the sense of Ulam-Hyers-Rassias (UHR). All results in this study are established with the help of the Darbo’s fixed point theorem (DFPT) combined with Kuratowski measure of noncompactness (KMNC). We construct an example to illustrate the validity of our observed results.


Sign in / Sign up

Export Citation Format

Share Document