Statistical interpretation of the turbulent dissipation rate in wall-bounded flows

1995 ◽  
Vol 293 ◽  
pp. 321-347 ◽  
Author(s):  
J. Jovanović ◽  
Q.-Y. Ye ◽  
F. Durst

Statistical analysis was performed for interpreting the dissipation correlations in turbulent wall-bounded flows. The fundamental issues related to the formulation of the closure assumptions are discussed. Using the two-point correlation technique, a distinction is made between the homogeneous and inhomogeneous parts of the dissipation tensor. It is shown that the inhomogeneous part contributes half of the dissipation rate at the wall and vanishes remote from the wall region. The structure of an analytically derived equation was analysed utilizing the results of direct numerical simulations of turbulent channel flow at low Reynolds number.

2012 ◽  
Vol 701 ◽  
pp. 419-429 ◽  
Author(s):  
P. E. Hamlington ◽  
D. Krasnov ◽  
T. Boeck ◽  
J. Schumacher

AbstractLocal dissipation-scale distributions and high-order statistics of the energy dissipation rate are examined in turbulent channel flow using very high-resolution direct numerical simulations at Reynolds numbers ${\mathit{Re}}_{\tau } = 180$, $381$ and $590$. For sufficiently large ${\mathit{Re}}_{\tau } $, the dissipation-scale distributions and energy dissipation moments in the channel bulk flow agree with those in homogeneous isotropic turbulence, including only a weak Reynolds-number dependence of both the finest and largest scales. Systematic, but ${\mathit{Re}}_{\tau } $-independent, variations in the distributions and moments arise as the wall is approached for ${y}^{+ } \lesssim 100$. In the range $100\lt {y}^{+ } \lt 200$, there are substantial differences in the moments between the lowest and the two larger values of ${\mathit{Re}}_{\tau } $. This is most likely caused by coherent vortices from the near-wall region, which fill the whole channel for low ${\mathit{Re}}_{\tau } $.


2005 ◽  
Vol 9 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Jovan Jovanovic ◽  
Rafaela Hillerbrand

Statistical analysis of the velocity fluctuations is performed for the near-wall region of wall-bounded flows. By demanding that the small-scale part of the fluctuations satisfies constraints imposed by local ax symmetry it was found that the small scales must be entirely suppressed in the near-wall region. This major conclusion is well supported by all available data from direct numerical simulations.


2014 ◽  
Vol 749 ◽  
pp. 227-274 ◽  
Author(s):  
E. Germaine ◽  
L. Mydlarski ◽  
L. Cortelezzi

AbstractThe dissipation rate,$\varepsilon _{\theta }$, of a passive scalar (temperature in air) emitted from a concentrated source into a fully developed high-aspect-ratio turbulent channel flow is studied. The goal of the present work is to investigate the return to isotropy of the scalar field when the scalar is injected in a highly anisotropic manner into an inhomogeneous turbulent flow at small scales. Both experiments and direct numerical simulations (DNS) were used to study the downstream evolution of$\varepsilon _{\theta }$for scalar fields generated by line sources located at the channel centreline$(y_s/h = 1.0)$and near the wall$(y_s/h = 0.17)$. The temperature fluctuations and temperature derivatives were measured by means of a pair of parallel cold-wire thermometers in a flow at$Re_{\tau } = 520$. The DNS were performed at$Re_{\tau } = 190$using a spectral method to solve the continuity and Navier–Stokes equations, and a flux integral method (Germaine, Mydlarski & Cortelezzi,J. Comput. Phys., vol. 174, 2001, pp. 614–648) for the advection–diffusion equation. The statistics of the scalar field computed from both experimental and numerical data were found to be in good agreement, with certain discrepancies that were attributable to the difference in the Reynolds numbers of the two flows. A return to isotropy of the small scales was never perfectly observed in any region of the channel for the downstream distances studied herein. However, a continuous decay of the small-scale anisotropy was observed for the scalar field generated by the centreline line source in both the experiments and DNS. The scalar mixing was found to be more rapid in the near-wall region, where the experimental results exhibited low levels of small-scale anisotropy. However, the DNS, which were performed at lower$Re_{\tau }$, showed that persistent anisotropy can also exist near the wall, independently of the downstream location. The role of the mean velocity gradient in the production of$\varepsilon _{\theta }$(and therefore anisotropy) in the near-wall region was highlighted.


2009 ◽  
Vol 627 ◽  
pp. 1-32 ◽  
Author(s):  
HIROYUKI ABE ◽  
ROBERT ANTHONY ANTONIA ◽  
HIROSHI KAWAMURA

Direct numerical simulations of a turbulent channel flow with passive scalar transport are used to examine the relationship between small-scale velocity and scalar fields. The Reynolds number based on the friction velocity and the channel half-width is equal to 180, 395 and 640, and the molecular Prandtl number is 0.71. The focus is on the interrelationship between the components of the vorticity vector and those of the scalar derivative vector. Near the wall, there is close similarity between different components of the two vectors due to the almost perfect correspondence between the momentum and thermal streaks. With increasing distance from the wall, the magnitudes of the correlations become smaller but remain non-negligible everywhere in the channel owing to the presence of internal shear and scalar layers in the inner region and the backs of the large-scale motions in the outer region. The topology of the scalar dissipation rate, which is important for small-scale scalar mixing, is shown to be associated with the organized structures. The most preferential orientation of the scalar dissipation rate is the direction of the mean strain rate near the wall and that of the fluctuating compressive strain rate in the outer region. The latter region has many characteristics in common with several turbulent flows; viz. the dominant structures are sheetlike in form and better correlated with the energy dissipation rate than the enstrophy.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


2019 ◽  
Vol 881 ◽  
pp. 1073-1096 ◽  
Author(s):  
Andreas D. Demou ◽  
Dimokratis G. E. Grigoriadis

Rayleigh–Bénard convection in water is studied by means of direct numerical simulations, taking into account the variation of properties. The simulations considered a three-dimensional (3-D) cavity with a square cross-section and its two-dimensional (2-D) equivalent, covering a Rayleigh number range of $10^{6}\leqslant Ra\leqslant 10^{9}$ and using temperature differences up to 60 K. The main objectives of this study are (i) to investigate and report differences obtained by 2-D and 3-D simulations and (ii) to provide a first appreciation of the non-Oberbeck–Boussinesq (NOB) effects on the near-wall time-averaged and root-mean-squared (r.m.s.) temperature fields. The Nusselt number and the thermal boundary layer thickness exhibit the most pronounced differences when calculated in two dimensions and three dimensions, even though the $Ra$ scaling exponents are similar. These differences are closely related to the modification of the large-scale circulation pattern and become less pronounced when the NOB values are normalised with the respective Oberbeck–Boussinesq (OB) values. It is also demonstrated that NOB effects modify the near-wall temperature statistics, promoting the breaking of the top–bottom symmetry which characterises the OB approximation. The most prominent NOB effect in the near-wall region is the modification of the maximum r.m.s. values of temperature, which are found to increase at the top and decrease at the bottom of the cavity.


1996 ◽  
Vol 310 ◽  
pp. 269-292 ◽  
Author(s):  
Hugh M. Blackburn ◽  
Nagi N. Mansour ◽  
Brian J. Cantwell

An investigation of topological features of the velocity gradient field of turbulent channel flow has been carried out using results from a direct numerical simulation for which the Reynolds number based on the channel half-width and the centreline velocity was 7860. Plots of the joint probability density functions of the invariants of the rate of strain and velocity gradient tensors indicated that away from the wall region, the fine-scale motions in the flow have many characteristics in common with a variety of other turbulent and transitional flows: the intermediate principal strain rate tended to be positive at sites of high viscous dissipation of kinetic energy, while the invariants of the velocity gradient tensor showed that a preference existed for stable focus/stretching and unstable node/saddle/saddle topologies. Visualization of regions in the flow with stable focus/stretching topologies revealed arrays of discrete downstream-leaning flow structures which originated near the wall and penetrated into the outer region of the flow. In all regions of the flow, there was a strong preference for the vorticity to be aligned with the intermediate principal strain rate direction, with the effect increasing near the walls in response to boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document