Numerical studies of singularity formation at free surfaces and fluid interfaces in two-dimensional Stokes flow

1997 ◽  
Vol 331 ◽  
pp. 145-167 ◽  
Author(s):  
C. POZRIKIDIS

We consider the analytic structure of interfaces in several families of steady and unsteady two-dimensional Stokes flows, focusing on the formation of corners and cusps. Previous experimental and theoretical studies have suggested that, without surface tension, the interfaces spontaneously develop such singular points. We investigate whether and how corners and cusps actually develop in a time-dependent flow, and assess the stability of stationary cusped shapes predicted by previous authors. The motion of the interfaces is computed with high resolution using a boundary integral method for three families of flows. In the case of a bubble that is subjected to the family of straining flows devised by Antanovskii, we find that a stationary cusped shape is not likely to occur as the asymptotic limit of a transient deformation. Instead, the pointed ends of the bubble disintegrate in a process that is reminiscent of tip streaming. In the case of the flow due to an array of point-source dipoles immersed beneath a free surface, which is the periodic version of a flow proposed by Jeong & Moffatt, we find evidence that a cusped shape indeed arises as the result of a transient deformation. In the third part of the numerical study, we show that, under certain conditions, the free surface of a liquid film that is levelling under the action of gravity on a horizontal or slightly inclined surface develops an evolving corner or cusp. In certain cases, the film engulfs a small air bubble of ambient fluid to obtain a composite shape. The structure of a corner or a cusp in an unsteady flow does not have a unique shape, as it does at steady state. In all cases, a small amount of surface tension is able to prevent the formation of a singularity, but replacing the inviscid gas with a viscous liquid does not have a smoothing effect. The ability of the thin-film lubrication equation to produce mathematical singularities at the free surface of a levelling film is also discussed.

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Alex Doak ◽  
Jean-Marc Vanden-Broeck

AbstractThis paper concerns the flow of fluid exiting a two-dimensional pipe and impacting an infinite wedge. Where the flow leaves the pipe there is a free surface between the fluid and a passive gas. The model is a generalisation of both plane bubbles and flow impacting a flat plate. In the absence of gravity and surface tension, an exact free streamline solution is derived. We also construct two numerical schemes to compute solutions with the inclusion of surface tension and gravity. The first method involves mapping the flow to the lower half-plane, where an integral equation concerning only boundary values is derived. This integral equation is solved numerically. The second method involves conformally mapping the flow domain onto a unit disc in the s-plane. The unknowns are then expressed as a power series in s. The series is truncated, and the coefficients are solved numerically. The boundary integral method has the additional advantage that it allows for solutions with waves in the far-field, as discussed later. Good agreement between the two numerical methods and the exact free streamline solution provides a check on the numerical schemes.


1998 ◽  
Vol 357 ◽  
pp. 29-57 ◽  
Author(s):  
C. POZRIKIDIS

Numerical studies are performed addressing the development of regions of high curvature and the spontaneous occurrence of cusped interfacial shapes in two-dimensional and axisymmetric Stokes flow. In the numerical simulations, the velocity field is computed using a boundary-integral method, and the evolution of the concentration of an insoluble surfactant over an evolving interface is computed using an implicit finite-volume method. Three configurations are considered in detail, and the results are used to elucidate three different aspects of cusp formation. In the first series, the deformation of a two-dimensional bubble immersed in a family of straining flows devised by Antanovskii, and of an axisymmetric bubble immersed in an analogous family of flows devised by Sherwood, are examined. The numerical results indicate that highly elongated and cusped two-dimensional shapes, and pointed or cusped axisymmetric shapes, are unstable and should not be expected to occur in practice. In the second series of studies, the role of an insoluble surfactant on the transient deformation of bubbles subject to the Antanovskii or Sherwood flow is investigated. Under certain conditions, the reduced surface tension at the tips raises the local curvature to high values and causes the ejection of a sheet or column of gas by means of tip streaming. In the third series of studies, the coalescence of a polygonal formation of five viscous columns of a fluid placed in an arrangement that differs only slightly from one proposed recently by Richardson is examined. The numerical results confirm Richardson's predictions that transient cusps may occur at a finite time in the presence of surface tension. The underlying physical mechanism is discussed on the basis of reversibility of surface-driven Stokes flow and with reference to the regularity of the motion driven by negative surface tension. Replacing the inviscid ambient gas with a slightly viscous fluid whose viscosity is as low as one hundredth the viscosity of the cylinders suppresses the cusp formation.


1995 ◽  
Vol 302 ◽  
pp. 231-257 ◽  
Author(s):  
Jeremy M. Boulton-Stone

A numerical technique, based on the boundary integral method, is developed to allow the modelling of unsteady free-surface flows at large Reynolds numbers in cases where the surface is contaminated by some surface-active compound. This requires the method to take account of the tangential stress condition at the interface and is achieved through a boundary-layer analysis. The constitutive relation that forms the surface stress condition is assumed to be of the Boussinesq type and allows the incorporation of surface shear and dilatational viscous forces as well as Marangoni effects due to gradients in surface tension. Sorption kinetics can be included in the model, allowing calculations for both soluble and insolube surfactants. Application of the numerical model to the problem of bursting gas bubbles at a free surface shows the greatest effect to be due to surface dilatational viscosity which drastically reduces the amount of surface compression and can slow and even prevent the information of a liquid jet. Surface tension gradients give dilatational elasticity to the surface and thus also significantly prevent surface compression. Surface shear viscosity has a smaller effect on the interface motion but results in initially increased surface concentrations due to the sweeping up of surface particles ahead of the inward-moving surface wave.


2011 ◽  
Vol 688 ◽  
pp. 528-550 ◽  
Author(s):  
H. C. Woolfenden ◽  
E. I. Pǎrǎu

AbstractWe consider steady two-dimensional flow in a two-layer fluid under the effects of gravity and surface tension. The upper fluid is bounded above by a free surface and the lower fluid is bounded below by a rigid bottom. We assume the fluids to be inviscid and the flow to be irrotational in each layer. Solitary wave solutions are found to the fully nonlinear problem using a boundary integral method based on the Cauchy integral formula. The behaviour of the solitary waves on the interface and free surface is determined by the density ratio of the two fluids, the fluid depth ratio, the Froude number and the Bond numbers. The dispersion relation obtained for the linearized equations demonstrates the presence of two modes: a ‘slow’ mode and a ‘fast’ mode. When a sufficiently strong surface tension is present only on the free surface, there is a region, or ‘gap’, between the two modes where no linear periodic waves are found. In-phase and out-of-phase solitary waves are computed in this spectral gap. Damped oscillations appear in the tails of the solitary waves when the value of the free-surface Bond number is either sufficiently small or large. The out-of-phase waves broaden as the Froude number tends towards a critical value. When surface tension is present on both surfaces, out-of-phase solitary waves are computed. Damped oscillations occur in the tails of the waves when the interfacial Bond number is sufficiently small. Oppositely oriented solitary waves are shown to coexist for identical parameter values.


1986 ◽  
Vol 1 (2) ◽  
pp. 117-144 ◽  
Author(s):  
G. B. McFadden ◽  
P. W. Voorhees ◽  
R. F. Boisvert ◽  
D. I. Meiron

1998 ◽  
Vol 364 ◽  
pp. 325-347 ◽  
Author(s):  
MING XUE ◽  
DICK K. P. YUE

The unsteady fully nonlinear free-surface flow due to an impulsively started submerged point sink is studied in the context of incompressible potential flow. For a fixed (initial) submergence h of the point sink in otherwise unbounded fluid, the problem is governed by a single non-dimensional physical parameter, the Froude number, [Fscr ]≡Q/4π(gh5)1/2, where Q is the (constant) volume flux rate and g the gravitational acceleration. We assume axisymmetry and perform a numerical study using a mixed-Eulerian–Lagrangian boundary-integral-equation scheme. We conduct systematic simulations varying the parameter [Fscr ] to obtain a complete quantification of the solution of the problem. Depending on [Fscr ], there are three distinct flow regimes: (i) [Fscr ]<[Fscr ]1≈0.1924 – a ‘sub-critical’ regime marked by a damped wave-like behaviour of the free surface which reaches an asymptotic steady state; (ii) [Fscr ]1<[Fscr ]<[Fscr ]2≈0.1930 – the ‘trans-critical’ regime characterized by a reversal of the downward motion of the free surface above the sink, eventually developing into a sharp upward jet; (iii) [Fscr ]>[Fscr ]2 – a ‘super-critical’ regime marked by the cusp-like collapse of the free surface towards the sink. Mechanisms behind such flow behaviour are discussed and hydrodynamic quantities such as pressure, power and force are obtained in each case. This investigation resolves the question of validity of a steady-state assumption for this problem and also shows that a small-time expansion may be inadequate for predicting the eventual behaviour of the flow.


Sign in / Sign up

Export Citation Format

Share Document