Turbulent structure beneath surface gravity waves sheared by the wind

1996 ◽  
Vol 328 ◽  
pp. 313-344 ◽  
Author(s):  
L. Thais ◽  
J. Magnaudet

New experiments have been carried out in a large laboratory channel to explore the structure of turbulent motion in the water layer beneath surface gravity waves. These experiments involve pure wind waves as well as wind-ruffled mechanically generated waves. A submersible two-component LDV system has been used to obtain the three components of the instantaneous velocity field along the vertical direction at a single fetch of 26 m. The displacement of the free surface has been determined simultaneously at the same downstream location by means of wave gauges. For both types of waves, suitable separation techniques have been used to split the total fluctuating motion into an orbital contribution (i.e. a motion induced by the displacement of the surface) and a turbulent contribution. Based on these experimental results, the present paper focuses on the structure of the water turbulence. The most prominent feature revealed by the two sets of experiments is the enhancement of both the turbulent kinetic energy and its dissipation rate with respect to values found near solid walls. Spectral analysis provides clear indications that wave–turbulence interactions greatly affect energy transfers over a significant frequency range by imposing a constant timescale related to the wave-induced strain. For mechanical waves we discuss several turbulent statistics and their modulation with respect to the wave phase, showing that the turbulence we observed was deeply affected at both large and small scales by the wave motion. An analysis of the phase variability of the bursting suggests that there is a direct interaction between the waves and the underlying turbulence, mainly at the wave crests. Turbulence budgets show that production essentially takes place in the wavy region of the flow, i.e. above the wave troughs. These results are finally used to address the nature of the basic mechanisms governing wave–turbulence interactions.

2022 ◽  
Vol 933 ◽  
Author(s):  
Zhou Zhang ◽  
Yulin Pan

In this paper, we numerically study the wave turbulence of surface gravity waves in the framework of Euler equations of the free surface. The purpose is to understand the variation of the scaling of the spectra with wavenumber $k$ and energy flux $P$ at different nonlinearity levels under different forcing/free-decay conditions. For all conditions (free decay and narrow-band and broad-band forcing) that we consider, we find that the spectral forms approach the wave turbulence theory (WTT) solution $S_\eta \sim k^{-5/2}$ and $S_\eta \sim P^{1/3}$ at high nonlinearity levels. With a decrease of nonlinearity level, the spectra for all cases become steeper, with the narrow-band forcing case exhibiting the most rapid deviation from WTT. We investigate bound waves and the finite-size effect as possible mechanisms causing the spectral variations. Through a tri-coherence analysis, we find that the finite-size effect is present in all cases, which is responsible for the overall steepening of the spectra and the reduced capacity of energy flux at lower nonlinearity levels. The fraction of bound waves in the domain generally decreases with the decrease of nonlinearity level, except for the narrow-band case, which exhibits a transition at a critical nonlinearity level below which a rapid increase is observed. This increase serves as the main reason for the fastest deviation from WTT with the decrease of nonlinearity in the narrow-band forcing case.


2008 ◽  
Vol 32 (9) ◽  
pp. 1696-1710 ◽  
Author(s):  
Eduardo Godoy ◽  
Axel Osses ◽  
Jaime H. Ortega ◽  
Alvaro Valencia

1973 ◽  
Vol 29 (3) ◽  
pp. 94-105 ◽  
Author(s):  
Ken Sasaki ◽  
Takashi Murakami

Wave Motion ◽  
2020 ◽  
pp. 102702
Author(s):  
M.A. Manna ◽  
S. Noubissie ◽  
J. Touboul ◽  
B. Simon ◽  
R.A. Kraenkel

Author(s):  
D. Hasselmann ◽  
J. Bösenberg ◽  
M. Dunckel ◽  
K. Richter ◽  
M. Grünewald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document