Long-wavelength surface-tension-driven Bénard convection: experiment and theory

1997 ◽  
Vol 345 ◽  
pp. 45-78 ◽  
Author(s):  
STEPHEN J. VANHOOK ◽  
MICHAEL F. SCHATZ ◽  
J. B. SWIFT ◽  
W. D. MCCORMICK ◽  
HARRY L. SWINNEY

Surface-tension-driven Bénard (Marangoni) convection in liquid layers heated from below can exhibit a long-wavelength primary instability that differs from the more familiar hexagonal instability associated with Bénard. This long-wavelength instability is predicted to be significant in microgravity and for thin liquid layers. The instability is studied experimentally in terrestrial gravity for silicone oil layers 0.007 to 0.027 cm thick on a conducting plate. For shallow liquid depths (<.017 cm for 0.102 cm2 s−1 viscosity liquid), the system evolves to a strongly deformed long-wavelength state which can take the form of a localized depression (‘dry spot’) or a localized elevation (‘high spot’), depending on the thickness and thermal conductivity of the gas layer above the liquid. For slightly thicker liquid depths (0.017–0.024 cm), the formation of a dry spot induces the formation of hexagons. For even thicker liquid depths (>0.024 cm), the system forms only the hexagonal convection cells. A two-layer nonlinear theory is developed to account properly for the effect of deformation on the interface temperature profile. Experimental results for the long-wavelength instability are compared to our two-layer theory and to a one-layer theory that accounts for the upper gas layer solely with a heat transfer coefficient. The two-layer model better describes the onset of instability and also predicts the formation of localized elevations, which the one-layer model does not predict. A weakly nonlinear analysis shows that the bifurcation is subcritical. Solving for steady states of the system shows that the subcritical pitchfork bifurcation curve never turns over to a stable branch. Numerical simulations also predict a subcritical instability and yield long-wavelength states that qualitatively agree with the experiments. The observations agree with the onset prediction of the two-layer model, except for very thin liquid layers; this deviation from theory may arise from small non-uniformities in the experiment. Theoretical analysis shows that a small non-uniformity in heating produces a large steady-state deformation (seen in the experiment) that becomes more pronounced with increasing temperature difference across the liquid. This steady-state deformation becomes unstable to the long-wavelength instability at a smaller temperature difference than that at which the undeformed state becomes unstable in the absence of non-uniformity.

2006 ◽  
Vol 36 (11) ◽  
pp. 2185-2198 ◽  
Author(s):  
Joseph Pedlosky

Abstract The time-dependent response of an ocean basin to the imposition of cooling (or heating) is examined in the context of a quasigeostrophic, two-layer model on the beta plane. The focus is on the structure and magnitude of the vertical motion and its response to both a switch-on forcing and a periodic forcing. The model employed is a time-dependent version of an earlier model used to discuss the intensification of sinking in the region of the western boundary current. The height of the interface of the two-layer model serves as an analog of temperature, and the vertical velocity at the interface consists of a cross-isopycnal velocity modeled in terms of a relaxation to a prescribed interface height, an adiabatic representation of eddy thickness fluxes parameterized as lateral diffusion of thickness, and the local vertical motion of the interface itself. The presence of time dependence adds additional dynamical features to the problem, in particular the emergence of low-frequency, weakly damped Rossby basin modes. If the buoyancy forcing is zonally uniform the basin responds to a switch-on of the forcing by coming into steady-state equilibrium after the passage of a single baroclinic Rossby wave. If the forcing is nonuniform in the zonal direction, a sequence of Rossby basin modes is excited and their decay is required before the basin achieves a steady state. For reasonable parameter values the boundary layers, in which both horizontal and vertical circulations are closed, are quasi-steady and respond to the instantaneous state of the interior. As in the steady problem the flow is sensitive to small nonquasigeostrophic mass fluxes across the perimeter of the basin. These fluxes generally excite basin modes as well. The basin modes will also be weakly excited if the beta-plane approximation is relaxed. The response to periodic forcing is also examined, and the sensitivity of the response to the structure of the forcing is similar to the switch-on problem.


2021 ◽  
Vol 408 ◽  
pp. 126347
Author(s):  
Jiaqi Zhang ◽  
Ruigang Zhang ◽  
Liangui Yang ◽  
Quansheng Liu ◽  
Liguo Chen

Wave Motion ◽  
1998 ◽  
Vol 28 (4) ◽  
pp. 333-352 ◽  
Author(s):  
V.I. Klyatskin ◽  
N.V. Gryanik ◽  
D. Gurarie

1978 ◽  
Vol 15 (10) ◽  
pp. 1539-1546 ◽  
Author(s):  
A. Koziar ◽  
D. W. Strangway

The audiofrequency magnetotelluric (AMT) method has been used to study permafrost thickness near Tuktoyaktuk, N.W.T. in the Mackenzie Delta. In the frequency range of 10 Hz–10 kHz the permafrost behaves as a simple resistive layer over a conductive layer. This simple two-layer model can be inverted by asymptotic models to give a unique value for the thickness of the highly resistive frozen layer. In areas of simple layering, these results correlate well with drilling. In areas of sharp lateral variations in resistivity, depths tend to be underestimated. Unlike other electrical methods, AMT is not hampered by the presence of a surface melt layer in the summer if the conductivity–thickness product of this 'active layer' is less than about 0.03 mho (0.03 S).


1995 ◽  
Vol 75 (24) ◽  
pp. 4397-4400 ◽  
Author(s):  
Stephen J. VanHook ◽  
Michael F. Schatz ◽  
William D. McCormick ◽  
J. B. Swift ◽  
Harry L. Swinney

Sign in / Sign up

Export Citation Format

Share Document