Spatial numerical simulation of boundary layer transition: effects of a spherical particle

1997 ◽  
Vol 345 ◽  
pp. 133-164 ◽  
Author(s):  
E. M. SAIKI ◽  
S. BIRINGEN

In the present study, the effects of an isolated stationary spherical particle on the transition process in a flat-plate boundary layer are examined by a spatial direct numerical simulation. The full three-dimensional time-dependent incompressible Navier–Stokes equations are integrated by a time-splitting method and discretized spatially by a high-order finite difference/spectral method. A virtual boundary technique defining the no-slip boundary of a sphere is implemented within the Cartesian geometry of the computational grid.Two numerical simulations which consider the effects of the sphere on the boundary layer are presented. The subcritical Reynolds number case reveals the appearance of hairpin vortices shed into the sphere wake which decay as they are convected downstream. The initial interaction of the sphere and the boundary layer produces a three-dimensional isolated disturbance comprising a wave part and a transient part. The decaying transient part is convected downstream at the local mean velocity, while the wave part induces a decaying Tollmien–Schlichting wave in the flow field.In the second case, an increase in the Reynolds number results in a wedge of incipient turbulent flow downstream of the sphere. The development of the wake of the sphere is dominated by the appearance of an isolated disturbance which rapidly breaks down forming a structure resembling a turbulent spot. It is demonstrated that the transition induced by a sphere in the boundary layer is due to a mechanism related to bypass transition.

1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


1998 ◽  
Vol 122 (3) ◽  
pp. 442-449 ◽  
Author(s):  
Xiaohua Wu ◽  
Paul A. Durbin

Turbulent wakes swept across a flat plate boundary layer simulate the phenomenon of wake-induced bypass transition. Benchmark data from a direct numerical simulation of this process are presented and compared to Reynolds-averaged predictions. The data are phase-averaged skin friction and mean velocities. The predictions and data are found to agree in many important respects. One discrepancy is a failure to reproduce the skin friction overshoot following transition. [S0889-504X(00)00503-1]


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Holger Albiez ◽  
Christoph Gramespacher ◽  
Matthias Stripf ◽  
Hans-Jörg Bauer

Abstract A new experimental dataset focusing on the influence of high freestream turbulence and large pressure gradients on boundary layer transition is presented. The experiments are conducted in a new wind tunnel equipped with a flat plate test section and a new kind of turbulence generator, which allows for a continuous variation of turbulence intensity. The flat plate is mounted midway between contoured top and bottom walls. Two different wall contours can be implemented to create pressure distributions on the flat plate that are typical for the pressure and suction side of high pressure turbine cascades. A large variation of Reynolds number from 3.0 × 105 to 7.5 × 105 and inlet turbulence intensity between 1.1% and 8% is realized, resulting in more than 100 test cases. Measurements comprise highly resolved heat transfer, near-wall intermittency and freestream Reynolds stress distributions. Near-wall intermittency is measured using a traversable hotfilm sensor while freestream Reynolds stresses are measured simultaneously at the same position with a revolvable X-wire probe. Additionally, turbulent length scales are analyzed using the X-wire signal along the flat plate. Results show that heat transfer and near-wall intermittency distributions are in good agreement and that heat transfer at high turbulence levels increases prior to the formation of first turbulence spots. Transition onset is found to be influenced by the turbulence Reynolds number, i.e., turbulent length scales. At constant inlet turbulence intensity, transition onset moves upstream, when the turbulent Reynolds number is decreased.


1996 ◽  
Vol 327 ◽  
pp. 101-115 ◽  
Author(s):  
Paolo Luchini

A three-dimensional mode of spatial instability, related to the temporal algebraic growth that determines lift-up in parallel flow, is found to occur in the two-dimensional boundary layer growing over a flat surface. This unstable perturbation can be framed within the limits of Prandtl's standard boundary-layer approximation, and therefore develops at any Reynolds number for which the boundary layer exists, in sharp contrast to all previously known flow instabilities which only occur beyond a sharply defined Reynolds-number threshold. It is thus a good candidate for the initial linear amplification mechanism that leads to bypass transition.


Author(s):  
Hiroyuki Yoshikawa ◽  
Keisuke Shimizu ◽  
Terukazu Ota

Direct Numerical Simulation results of three-dimensional laminar separated and reattached flow and heat transfer around a surface-mounted square plate are presented in this paper. Numerical calculations of Navier-Stokes equations and energy one are carried out using the finite difference method with SMAC method. A square plate is presumed to be mounted in a laminar boundary layer developing on a flat surface and to be heated under a constant heat flux. Numerical calculations are made on two boundary layer thicknesses at the plate, and the Reynolds number is varied from 300 to 1000. Details of the separated and reattached flow and the thermal field therein are clarified.


2015 ◽  
Vol 778 ◽  
pp. 451-484 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall

In a recent paper, Deguchi & Hall (J. Fluid Mech., vol. 752, 2014a, pp. 602–625) described a new kind of exact coherent structure which sits at the edge of an asymptotic suction boundary layer at high values of the Reynolds number $Re$. At a distance $\ln Re$ from the wall, the structure is driven by the fully nonlinear interaction of tiny rolls, waves and streaks convected downstream at almost the free-stream speed. The interaction problem satisfies the unit-Reynolds-number three-dimensional Navier–Stokes equations and is localized in a layer of the same depth as the unperturbed boundary layer. Here, we show that the interaction problem is generic to any boundary layer that approaches its free-stream form through an exponentially small correction. It is shown that away from the layer where it is generated the induced roll–streak flow is dominated by non-parallel effects which now play a major role in the streamwise evolution of the structure. The similarity with the parallel boundary layer case is restricted only to the layer where it is generated. It is shown that non-parallel effects cause the structure to persist only over intervals of finite length in any growing boundary layer and lead to a flow structure reminiscent of turbulent boundary layer simulations. The results found shed light on a possible mechanism to couple near-wall streaks with coherent structures located towards the edge of a turbulent boundary layer. Some discussion of how the mechanism adapts to a three-dimensional base flow is given.


1990 ◽  
Vol 217 ◽  
pp. 367-390 ◽  
Author(s):  
Philip Hall ◽  
Sharon O. Seddougui

The three-dimensional boundary layer on a swept wing can support different types of hydrodynamic instability. Here attention is focused on the so-called ‘spanwise instability’ problem which occurs when the attachment-line boundary layer on the leading edge becomes unstable to Tollmien–Schlichting waves. In order to gain insight into the interactions that are important in that problem a simplified basic state is considered. This simplified flow corresponds to the swept attachment-line boundary layer on an infinite flat plate. The basic flow here is an exact solution of the Navier–Stokes equations and its stability to two-dimensional waves propagating along the attachment line can be considered exactly at finite Reynolds number. This has been done in the linear and weakly nonlinear regimes by Hall, Malik & Poll (1984) and Hall & Malik (1986). Here the corresponding problem is studied for oblique waves and their interaction with two-dimensional waves is investigated. In fact oblique modes cannot be described exactly at finite Reynolds number so it is necessary to make a high-Reynolds-number approximation and use triple-deck theory. It is shown that there are two types of oblique wave which, if excited, cause the destabilization of the two-dimensional mode and the breakdown of the disturbed flow at a finite distance from the leading edge. First a low-frequency mode closely related to the viscous stationary crossflow mode discussed by Hall (1986) and MacKerrell (1987) is a possible cause of breakdown. Secondly a class of oblique wave with frequency comparable with that of the two-dimensional mode is another cause of breakdown. It is shown that the relative importance of the modes depends on the distance from the attachment line.


Sign in / Sign up

Export Citation Format

Share Document