scholarly journals A theory of ice-sheet surges

1998 ◽  
Vol 44 (146) ◽  
pp. 104-118 ◽  
Author(s):  
A. C. Fowler ◽  
E. Schiavi

AbstractA simplified model of a two-dimensional ice sheet is described. It includes basal ice sliding dependent, on the basal water pressure, which itself is described by a simple theory of basal drainage. We show that this simple but sophisticated model predicts surges of the ice mass in realistic circumstances, and we describe these surges by solving the problem numerically. We also are able to describe some parts of the surge analytically. The numerical solution of the model is a delicate matter, and highlights pitfalls to be avoided if more complicated models are to be solved successfully.

1998 ◽  
Vol 44 (146) ◽  
pp. 104-118 ◽  
Author(s):  
A. C. Fowler ◽  
E. Schiavi

AbstractA simplified model of a two-dimensional ice sheet is described. It includes basal ice sliding dependent, on the basal water pressure, which itself is described by a simple theory of basal drainage. We show that this simple but sophisticated model predicts surges of the ice mass in realistic circumstances, and we describe these surges by solving the problem numerically. We also are able to describe some parts of the surge analytically. The numerical solution of the model is a delicate matter, and highlights pitfalls to be avoided if more complicated models are to be solved successfully.


2019 ◽  
Vol 13 (7) ◽  
pp. 1877-1887 ◽  
Author(s):  
Matt Trevers ◽  
Antony J. Payne ◽  
Stephen L. Cornford ◽  
Twila Moon

Abstract. Iceberg calving parameterisations currently implemented in ice sheet models do not reproduce the full observed range of calving behaviours. For example, though buoyant forces at the ice front are known to trigger full-depth calving events on major Greenland outlet glaciers, a multi-stage iceberg calving event at Jakobshavn Isbræ is unexplained by existing models. To explain this and similar events, we propose a notch-triggered rotation mechanism, whereby a relatively small subaerial calving event triggers a larger full-depth calving event due to the abrupt increase in buoyant load and the associated stresses generated at the ice–bed interface. We investigate the notch-triggered rotation mechanism by applying a geometric perturbation to the subaerial section of the calving front in a diagnostic flow-line model of an idealised glacier snout, using the full-Stokes, finite element method code Elmer/Ice. Different sliding laws and water pressure boundary conditions are applied at the ice–bed interface. Water pressure has a big influence on the likelihood of calving, and stress concentrations large enough to open crevasses were generated in basal ice. Significantly, the location of stress concentrations produced calving events of approximately the size observed, providing support for future application of the notch-triggered rotation mechanism in ice-sheet models.


2018 ◽  
Author(s):  
Matt Trevers ◽  
Antony J. Payne ◽  
Stephen L. Cornford ◽  
Twila Moon

Abstract. Iceberg calving parameterisations currently implemented in ice sheet models do not reproduce the full observed range of calving behaviours. For example, though buoyant forces at the ice front are known to trigger full-depth calving events on major Greenland outlet glaciers, a multi-stage iceberg calving event at Jakobshavn Isbræ is unexplained by existing models. To explain this and similar events, we propose a notch-triggered rotation mechanism whereby a relatively small subaerial calving event triggers a larger full-depth calving event due to the abrupt increase in buoyant load and the associated stresses generated at the ice-bed interface. We investigate the notch-triggered rotation mechanism by applying a geometric perturbation to the subaerial section of the calving front in a diagnostic flowline model of an idealised glacier snout, using the full-Stokes, finite element method code Elmer/Ice. Different sliding laws and water pressure boundary conditions are applied at the ice-bed interface. Water pressure has a big influence on the likelihood of calving, and stress concentrations large enough to open crevasses were generated in basal ice. Significantly, the location of stress concentrations produced calving events of approximately the size observed, providing support for future application of the notch-triggered rotation mechanism in ice-sheet models.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 327-330
Author(s):  
Li Yang ◽  
Bo Zhang ◽  
Jiří Jaromír Klemeš ◽  
Jie Liu ◽  
Meiyu Song ◽  
...  

Abstract Many researchers numerically investigated U-tube underground heat exchanger using a two-dimensional simplified pipe. However, a simplified model results in large errors compared to the data from construction sites. This research is carried out using a three-dimensional full-size model. A model validation is conducted by comparing with experimental data in summer. This article investigates the effects of fluid velocity and buried depth on the heat exchange rate in a vertical U-tube underground heat exchanger based on fluid–structure coupled simulations. Compared with the results at a flow rate of 0.4 m/s, the results of this research show that the heat transfer per buried depth at 1.0 m/s increases by 123.34%. With the increase of the buried depth from 80 to 140 m, the heat transfer per unit depth decreases by 9.72%.


2002 ◽  
Vol 48 (161) ◽  
pp. 192-198 ◽  
Author(s):  
Peter G. Knight ◽  
Richard I. Waller ◽  
Carrie J. Patterson ◽  
Alison P. Jones ◽  
Zoe P. Robinson

AbstractSediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12–45 m3 m−1 a−1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glaciofluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.


1997 ◽  
Vol 43 (143) ◽  
pp. 3-10 ◽  
Author(s):  
V.I. Morgan ◽  
C.W. Wookey ◽  
J. Li ◽  
T.D. van Ommen ◽  
W. Skinner ◽  
...  

AbstractThe aim of deep ice drilling on Law Dome, Antarctica, has been to exploit the special characteristics of Law Dome summit, i.e. low temperature and high accumulation near an ice divide, to obtain a high-resolution ice core for climatic/environmental studies of the Holocene and the Last Glacial Maximum (LGM). Drilling was completed in February 1993, when basal ice containing small fragments of rock was reached at a depth of 1196 m. Accurate ice dating, obtained by counting annual layers revealed by fine-detail δ18О, peroxide and electrical-conductivity measurements, is continuous down to 399 m, corresponding to a date of AD 1304. Sulphate concentration measurements, made around depths where conductivity tracing indicates volcanic fallout, allow confirmation of the dating (for Agung in 1963 and Tambora in 1815) or estimates of the eruption date from the ice dating (for the Kuwae, Vanuatu, eruption ~1457). The lower part of the core is dated by extrapolating the layer-counting using a simple model of the ice flow. At the LGM, ice-fabric measurements show a large decrease (250 to 14 mm2) in crystal size and a narrow maximum in c-axis vertically. The main zone of strong single-pole fabrics however, is located higher up in a broad zone around 900 m. Oxygen-isotope (δ18O) measurements show Holocene ice down to 1113 m, the LGM at 1133 m and warm (δ18O) about the same as Holocene) ice near the base of the ice sheet. The LGM/Holocene δ18O shift of 7.0‰, only ~1‰ larger than for Vostok, indicates that Law Dome remained an independent ice cap and was not overridden by the inland ice sheet in the Glacial.


2013 ◽  
Vol 380-384 ◽  
pp. 1143-1146
Author(s):  
Xiang Guo Liu

The paper researches the parametric inversion of the two-dimensional convection-diffusion equation by means of best perturbation method, draw a Numerical Solution for such inverse problem. It is shown by numerical simulations that the method is feasible and effective.


Sign in / Sign up

Export Citation Format

Share Document