scholarly journals Discharge of debris from ice at the margin of the Greenland ice sheet

2002 ◽  
Vol 48 (161) ◽  
pp. 192-198 ◽  
Author(s):  
Peter G. Knight ◽  
Richard I. Waller ◽  
Carrie J. Patterson ◽  
Alison P. Jones ◽  
Zoe P. Robinson

AbstractSediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12–45 m3 m−1 a−1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glaciofluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.

2019 ◽  
Vol 5 (6) ◽  
pp. eaav9396 ◽  
Author(s):  
Andy Aschwanden ◽  
Mark A. Fahnestock ◽  
Martin Truffer ◽  
Douglas J. Brinkerhoff ◽  
Regine Hock ◽  
...  

The Greenland Ice Sheet holds 7.2 m of sea level equivalent and in recent decades, rising temperatures have led to accelerated mass loss. Current ice margin recession is led by the retreat of outlet glaciers, large rivers of ice ending in narrow fjords that drain the interior. We pair an outlet glacier–resolving ice sheet model with a comprehensive uncertainty quantification to estimate Greenland’s contribution to sea level over the next millennium. We find that Greenland could contribute 5 to 33 cm to sea level by 2100, with discharge from outlet glaciers contributing 8 to 45% of total mass loss. Our analysis shows that uncertainties in projecting mass loss are dominated by uncertainties in climate scenarios and surface processes, whereas uncertainties in calving and frontal melt play a minor role. We project that Greenland will very likely become ice free within a millennium without substantial reductions in greenhouse gas emissions.


2021 ◽  
pp. 1-14
Author(s):  
Joshua J. Williams ◽  
Noel Gourmelen ◽  
Peter Nienow

Abstract Greenland's future contribution to sea-level rise is strongly dependent on the extent to which dynamic perturbations, originating at the margin, can drive increased ice flow within the ice-sheet interior. However, reported observations of ice dynamical change at distances >~50 km from the margin have a very low spatial and temporal resolution. Consequently, the likely response of the ice-sheet's interior to future oceanic and atmospheric warming is poorly constrained. Through combining GPS and satellite-image-derived ice velocity measurements, we measure multi-decadal (1993–1997 to 2014–2018) velocity change at 45 inland sites, encompassing all regions of the ice sheet. We observe an almost ubiquitous acceleration inland of tidewater glaciers in west Greenland, consistent with acceleration and retreat at glacier termini, suggesting that terminus perturbations have propagated considerable distances (>100 km) inland. In contrast, outside of Kangerlussuaq, we observe no acceleration inland of tidewater glaciers in east Greenland despite terminus retreat and near-terminus acceleration, and suggest propagation may be limited by the influence of basal topography and ice geometry. This pattern of inland dynamical change indicates that Greenland's future contribution to sea-level will be spatially complex and will depend on the capacity for dynamic changes at individual outlet glacier termini to propagate inland.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ching-Yao Lai ◽  
Laura A. Stevens ◽  
Danielle L. Chase ◽  
Timothy T. Creyts ◽  
Mark D. Behn ◽  
...  

AbstractSurface meltwater reaching the base of the Greenland Ice Sheet transits through drainage networks, modulating the flow of the ice sheet. Dye and gas-tracing studies conducted in the western margin sector of the ice sheet have directly observed drainage efficiency to evolve seasonally along the drainage pathway. However, the local evolution of drainage systems further inland, where ice thicknesses exceed 1000 m, remains largely unknown. Here, we infer drainage system transmissivity based on surface uplift relaxation following rapid lake drainage events. Combining field observations of five lake drainage events with a mathematical model and laboratory experiments, we show that the surface uplift decreases exponentially with time, as the water in the blister formed beneath the drained lake permeates through the subglacial drainage system. This deflation obeys a universal relaxation law with a timescale that reveals hydraulic transmissivity and indicates a two-order-of-magnitude increase in subglacial transmissivity (from 0.8 ± 0.3 $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 to 215 ± 90.2 $${\rm{m}}{{\rm{m}}}^{3}$$ m m 3 ) as the melt season progresses, suggesting significant changes in basal hydrology beneath the lakes driven by seasonal meltwater input.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2016 ◽  
Vol 12 (12) ◽  
pp. 2195-2213 ◽  
Author(s):  
Heiko Goelzer ◽  
Philippe Huybrechts ◽  
Marie-France Loutre ◽  
Thierry Fichefet

Abstract. As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG,  ∼  130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate–ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet–climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.


2018 ◽  
Vol 12 (9) ◽  
pp. 2981-2999 ◽  
Author(s):  
Jiangjun Ran ◽  
Miren Vizcaino ◽  
Pavel Ditmar ◽  
Michiel R. van den Broeke ◽  
Twila Moon ◽  
...  

Abstract. The Greenland Ice Sheet (GrIS) is currently losing ice mass. In order to accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry mission Gravity Recovery and Climate Experiment (GRACE), surface mass balance (SMB) output of the Regional Atmospheric Climate Model v. 2 (RACMO2), and ice discharge estimates to analyze the mass budget of Greenland at various temporal and spatial scales. We find that the mean rate of mass variations in Greenland observed by GRACE was between −277 and −269 Gt yr−1 in 2003–2012. This estimate is consistent with the sum (i.e., -304±126 Gt yr−1) of individual contributions – surface mass balance (SMB, 216±122 Gt yr−1) and ice discharge (520±31 Gt yr−1) – and with previous studies. We further identify a seasonal mass anomaly throughout the GRACE record that peaks in July at 80–120 Gt and which we interpret to be due to a combination of englacial and subglacial water storage generated by summer surface melting. The robustness of this estimate is demonstrated by using both different GRACE-based solutions and different meltwater runoff estimates (namely, RACMO2.3, SNOWPACK, and MAR3.9). Meltwater storage in the ice sheet occurs primarily due to storage in the high-accumulation regions of the southeast and northwest parts of Greenland. Analysis of seasonal variations in outlet glacier discharge shows that the contribution of ice discharge to the observed signal is minor (at the level of only a few gigatonnes) and does not explain the seasonal differences between the total mass and SMB signals. With the improved quantification of meltwater storage at the seasonal scale, we highlight its importance for understanding glacio-hydrological processes and their contributions to the ice sheet mass variability.


2013 ◽  
Vol 59 (216) ◽  
pp. 733-749 ◽  
Author(s):  
H. Goelzer ◽  
P. Huybrechts ◽  
J.J. Fürst ◽  
F.M. Nick ◽  
M.L. Andersen ◽  
...  

AbstractPhysically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31 % higher sea-level contribution compared to a PDD model run with the same parameters as for IPCC AR4.


2021 ◽  
Author(s):  
Marco Möller ◽  
Beatriz Recinos ◽  
Ben Marzeion

<p>The Greenland Ice Sheet is losing mass at increasing rates. Substantial amounts of this mass loss occur by ice discharge. The ice sheet is surrounded by thousands of peripheral glaciers, which are dynamically decoupled from the ice sheet, and which account for ~10 % of the global glacier ice volume outside the two main ice sheets. Rather low-lying along the coasts, these peripheral glaciers are also losing mass at increasing, but disputed, rates. The total absence of knowledge about the role and share of solid ice discharge in this mass loss adds to the controversy. Since the quantification of ice discharge is still pending, a full understanding of ice mass loss processes in this globally important glacier region is substantially hampered.</p><p>Here, we present the first estimation of ice discharge from Greenland's peripheral tidewater glaciers. For each of these 760 glaciers, we combine an idealized rectangular flux gate cross sections derived from modelling with the Open Global Glacier Model with surface ice flow velocities derived from the ITS_LIVE and MEaSUREs remote sensing datasets to calculate glacier specific ice discharge on both annual and multi-annual time scales over the period 1985 to 2018. For the few glaciers not covered by either of the employed original datasets or modelling methods we use a regression tree-based extrapolation scheme to estimate the necessary input data for our calculation.</p><p>Our findings indicate a significant overall increase of ice discharge over the study period although several individual glaciers show contrasting developments. This increase became especially apparent across the southern parts of Greenland. Our results also show that the total of the ice discharge from Greenland's peripheral tidewater glaciers is dominated by few major contributors and that this dominance is completely time-independent.</p>


1996 ◽  
Vol 23 ◽  
pp. 237-246 ◽  
Author(s):  
Frank Pattyn

Recent observations in Shirase Drainage Basin. Enderby Land, Antarctica, show that the ice sheet is thinning at the considerable rate of 0.5–1.0 m a −1. Surface velocities in the stream area reach more than 2000 ma−1, making Shirase Glacier one of the fastest-flowing glaciers in East Antarctica. A numerical investigation of the present stress field in Shirase Glacier shows the existence of a large transition zone 200 km in length where both shearing and stretching are of equal importance, followed by a stream zone of approximately 50 km, where stretching is the major deformation process.In order to improve insight into the present transient behaviour of the ice-sheet system, a two-dimensional time-dependent flowline model has been developed, taking into account the ice-stream mechanics. Both bedrock adjustment and ice temperature are taken into account and the temperature field is fully coupled to the ice-sheet velocity field.Experiments were carried out with different basal motion conditions in order to understand their influence on the dynamic behaviour of the ice sheet and the stream area in particular. Results revealed that when basal motion becomes the dominant deformation process, (partial) disintegration of the ice sheet is counteracted by colder basal-ice temperatures due to higher advection rates. This gives rise to a cyclic behaviour in ice-sheets response and large changes in local imbalance values.


2009 ◽  
Vol 55 (189) ◽  
pp. 147-162 ◽  
Author(s):  
R. Thomas ◽  
E. Frederick ◽  
W. Krabill ◽  
S. Manizade ◽  
C. Martin

AbstractAircraft laser-altimeter surveys during the 1990s showed near-coastal parts of the Greenland ice sheet to be thinning; despite slow thickening at higher elevations, the ice sheet lost mass to the ocean. Many outlet glaciers thinned more rapidly than could be explained by increased melting during the recent warmer summers, indicating dynamic imbalance between glacier velocity and upstream snow accumulation. Results from more recent surveys, presented here, show that thinning rates have increased in most coastal regions. For almost half of the surveys, these increases might have resulted from increases in summer melting, but rapid thinning on others is indicative of dynamic changes that increased with time. In particular, thinning rates on the three fastest glaciers increased to tens of m a−1 after 2000, and other observations show an approximate doubling in their velocities. The deep beds of these glaciers appear to have a strong influence on rates of grounding-line retreat and thickness change, with periods of glacier acceleration and rapid thinning initiated by flotation and break-up of lightly grounded glacier snouts or break-up of floating ice tongues. Near-simultaneous thinning of these widely separated glaciers suggests that warming of deeper ocean waters might be a common cause. Nearby glaciers without deep beds are thinning far more slowly, suggesting that basal lubrication as a result of increased surface melting has only a marginal impact on Greenland outlet-glacier acceleration


Sign in / Sign up

Export Citation Format

Share Document