scholarly journals Strain in the ice sheet deduced from the crystal-orientation fabrics from bare icefields adjacent to the Sør-Rondane Mountains, Dronning Maud Land, East Antarctica

1994 ◽  
Vol 40 (134) ◽  
pp. 135-139 ◽  
Author(s):  
S. Fujita ◽  
S. Mae

AbstractStructural analyses of ice collected from the bare ice surface in the region of the Sør-Rondane Mountains were carried out. Crystal-orientation fabrics and the disposition of surface cracks were investigated to determine the stress/strain configuration in the ice sheet near the mountains. Single-maximum fabric patterns with the axis of the maximum roughly perpendicular to the flow line on the horizontal plane were observed. It was deduced from the observations that the ice exhibits a fabric pattern indicating that the ice sheet is subjected to vertical shear strain between the ice flow and the nunataks.

1994 ◽  
Vol 40 (134) ◽  
pp. 135-139 ◽  
Author(s):  
S. Fujita ◽  
S. Mae

AbstractStructural analyses of ice collected from the bare ice surface in the region of the Sør-Rondane Mountains were carried out. Crystal-orientation fabrics and the disposition of surface cracks were investigated to determine the stress/strain configuration in the ice sheet near the mountains. Single-maximum fabric patterns with the axis of the maximum roughly perpendicular to the flow line on the horizontal plane were observed. It was deduced from the observations that the ice exhibits a fabric pattern indicating that the ice sheet is subjected to vertical shear strain between the ice flow and the nunataks.


2014 ◽  
Vol 2 (2) ◽  
pp. 911-933 ◽  
Author(s):  
N. F. Glasser ◽  
S. J. A. Jennings ◽  
M. J. Hambrey ◽  
B. Hubbard

Abstract. Continent-wide mapping of longitudinal ice-surface structures on the Antarctic Ice Sheet reveals that they originate in the interior of the ice sheet and are arranged in arborescent networks fed by multiple tributaries. Longitudinal ice-surface structures can be traced continuously down-ice for distances of up to 1200 km. They are co-located with fast-flowing glaciers and ice streams that are dominated by basal sliding rates above tens of m yr-1 and are strongly guided by subglacial topography. Longitudinal ice-surface structures dominate regions of converging flow, where ice flow is subject to non-coaxial strain and simple shear. Associating these structures with the AIS' surface velocity field reveals (i) ice residence times of ~ 2500 to 18 500 years, and (ii) undeformed flow-line sets for all major flow units analysed except the Kamb Ice Stream and the Institute and Möller Ice Stream areas. Although it is unclear how long it takes for these features to form and decay, we infer that the major ice-flow and ice-velocity configuration of the ice sheet may have remained largely unchanged for several thousand years, and possibly even since the end of the last glacial cycle. This conclusion has implications for our understanding of the long-term landscape evolution of Antarctica, including large-scale patterns of glacial erosion and deposition.


1989 ◽  
Vol 12 ◽  
pp. 124-126
Author(s):  
Hirokazu Ohmae ◽  
Fumihiko Nishio ◽  
Shinji Mae

A large part of the area of the Shirase Glacier drainage basin has been surveyed by airborne (operating frequency: 179 MHz) and ground-based (60 MHz) radio echo-sounding to define the bedrock topography and to investigate the condition of bed/ice interface since 1982.It is shown that the reflection intensity from the bed, which is corrected for attenuation in the ice sheet, has a higher value for reflection intensity in the down-stream area of Shirase Glacier than in the up-stream area. The area of strongest intensity of reflection from the bed coincides with the area for which the calculated temperature at the bed is above −1°C. The boundary area between the highest and lowest values of corrected reflected intensity corresponds to the area of decreasing basal shear stress. It is found that the distribution of high corrected reflection intensity corresponds to the area of thinning of the ice sheet, which has been measured by ice-flow observation in the Shirase Glacier drainage basin.


2018 ◽  
Vol 12 (3) ◽  
pp. 1047-1067 ◽  
Author(s):  
Felicity S. Graham ◽  
Mathieu Morlighem ◽  
Roland C. Warner ◽  
Adam Treverrow

Abstract. The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models – the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period – sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction – both scenarios dominated at depth by bed-parallel shear – the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.


1987 ◽  
Vol 9 ◽  
pp. 221-224 ◽  
Author(s):  
Minoru Yoshida ◽  
Kazunobu Yamashita ◽  
Shinji Mae

Extensive echo-sounding was carried out in east Dronning Maud Land during the 1984 field season. A 179 MHz radar with separate transmitting and receiving antennae was used and the echoes were recorded by a digital system to detect minute reflections. The results gave cross-sections of the ice sheet along traverse routes from lat. 69 °S. to 75°S, Detailed observations on the ground at Mizuho station showed that there was elliptical polarization in the internally reflected echoes when two antennae, kept in parallel with each other, were rotated horizontally. The internal echoes were most clearly distinguished when the antenna azimuth was oriented perpendicular to the flow line of the ice sheet. The internal echoes with a high reflection coefficient were detected at depths of 500–700 m and 1000–1500 m at Mizuho station. Since a distinct internal echo at a depth of 500 m coincides with a 5 cm thick volcanic ash-laden ice layer found in the 700 m ice core taken near the observation site, these echoes may correspond to the acidic ice layers formed by past volcanic events in east Dronning Maud Land.


2020 ◽  
Author(s):  
Felicity McCormack ◽  
Roland Warner ◽  
Adam Treverrow ◽  
Helene Seroussi

<p>Viscous deformation is the main process controlling ice flow in ice shelves and in slow-moving regions of polar ice sheets where ice is frozen to the bed. However, the role of deformation in flow in ice streams and fast-flowing regions is typically poorly represented in ice sheet models due to a major limitation in the current standard flow relation used in most large-scale ice sheet models – the Glen flow relation – which does not capture the steady-state flow of anisotropic ice that prevails in polar ice sheets. Here, we highlight recent advances in modeling deformation in the Ice Sheet System Model using the ESTAR (empirical, scalar, tertiary, anisotropic regime) flow relation – a new description of deformation that takes into account the impact of different types of stresses on the deformation rate. We contrast the influence of the ESTAR and Glen flow relations on the role of deformation in the dynamics of Thwaites Glacier, West Antarctica, using diagnostic simulations. We find key differences in: (1) the slow-flowing interior of the catchment where the unenhanced Glen flow relation simulates unphysical basal sliding; (2) over the floating Thwaites Glacier Tongue where the ESTAR flow relation outperforms the Glen flow relation in accounting for tertiary creep and the spatial differences in deformation rates inherent to ice anisotropy; and (3) in the grounded region within 80km of the grounding line where the ESTAR flow relation locally predicts up to three times more vertical shear deformation than the unenhanced Glen flow relation, from a combination of enhanced vertical shear flow and differences in the distribution of basal shear stresses. More broadly on grounded ice, the membrane stresses are found to play a key role in the patterns in basal shear stresses and the balance between basal shear stresses and gravitational forces simulated by each of the ESTAR and Glen flow relations. Our results have implications for the suitability of ice flow relations used to constrain uncertainty in reconstructions and projections of global sea levels, warranting further investigation into using the ESTAR flow relation in transient simulations of glacier and ice sheet dynamics. We conclude by discussing how geophysical data might be used to provide insight into the relationship between ice flow processes as captured by the ESTAR flow relation and ice fabric anisotropy.</p>


2017 ◽  
Author(s):  
Felicity S. Graham ◽  
Mathieu Morlighem ◽  
Roland C. Warner ◽  
Adam Treverrow

Abstract. The microstructural evolution that occurs in polycrystalline ice during deformation leads to the development of anisotropic rheological properties that are not adequately described by the most common, isotropic, ice flow relation used in large-scale ice sheet models – the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally-efficient, empirical, scalar, tertiary, anisotropic rheology (ESTAR). The effect of this anisotropic rheology on ice flow dynamics is investigated by comparing idealised simulations using ESTAR with those using the isotropic Glen flow relation, where the latter includes a flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed by ESTAR. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow over the ice shelf. For flow-line studies of idealised grounded flow over a bumpy topography or a sticky base – both scenarios dominated at depth by bed-parallel shear – the differences between simulated velocities using ESTAR and the Glen flow relation vary according to the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the anisotropic rheology of ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.


2020 ◽  
Author(s):  
Jamey Stutz ◽  
Andrew Mackintosh ◽  
Kevin Norton ◽  
Ross Whitmore ◽  
Carlo Baroni ◽  
...  

Abstract. Quantitative satellite observations provide a comprehensive assessment of ice sheet mass loss over the last four decades, but limited insights into long-term drivers of ice sheet change. Geological records can extend the observational record and aid our understanding of ice sheet–climate interactions. Here we present the first millennial-scale reconstruction of David Glacier, the largest East Antarctic outlet glacier in Victoria Land. We use surface exposure dating of glacial erratics deposited on nunataks to reconstruct changes in ice surface elevation through time. We then use numerical modelling experiments to determine the drivers of glacial thinning. Thinning profiles derived from 45 10Be and 3He surface exposure ages show that David Glacier experienced rapid thinning up to 2 m/yr during the mid-Holocene (~ 6,500 years ago). Thinning stabilised at 6 kyr, suggesting initial formation of the Drygalski Ice Tongue at this time. Our work, along with terrestrial cosmogenic nuclide records from adjacent glaciers, shows simultaneous glacier thinning in this sector of the Transantarctic Mountains occurred ~ 3 kyr after the retreat of marine-based grounded ice in the western Ross Embayment. The timing and rapidity of the reconstructed thinning at David Glacier is similar to reconstructions in the Amundsen and Weddell embayments. In order to identify the potential causes of these rapid changes along the David Glacier, we use a glacier flow line model designed for calving glaciers and compare modelled results against our geological data. We show that glacier thinning and marine-based grounding line retreat is initiated by interactions between enhanced sub-ice shelf melting and reduced lateral buttressing, leading to Marine Ice Sheet Instability. Such rapid glacier thinning events are not captured in continental or sector-scale numerical modelling reconstructions for this period. Together, our chronology and modelling suggest a ~ 2,000-year period of dynamic thinning in the recent geological past.


1979 ◽  
Vol 24 (90) ◽  
pp. 103-115 ◽  
Author(s):  
D. Raynaud ◽  
C. Lorius ◽  
W. F. Budd ◽  
N. W. Young

AbstractAn ice core has been obtained to the bedrock about 300 m deep in Terre Adélie, 5 km inland from the coast. Stable isotopes and gas content have been measured over the length of the core. The results have been interpreted in terms of the temperature and elevation of origin of the ice further inland on the ice sheet from the data obtained along an 800 km traverse towards Dome “C”, and from Dome “C”, at an elevation of about 3 200 m. The flow of the ice from Dome “C“ to the coast has been modelled to determine the ages and particle trajectories of the ice for present conditions.It has been found that the upper isotope and gas-content values in the core can be matched with the present regime using a base for ice flow above the present bed which is suggested by moraine in the ice core. The ice in the layer from the 200 m depth, where the age is apparently more than 5 000 years, to the 250 m depth, appears to have originated from conditions which differ substantially from those existing on the present inland ice-sheet surface. The results give an indication of a colder climate and greater ice-sheet thickness in the past.


Sign in / Sign up

Export Citation Format

Share Document