scholarly journals Measurements of CO2 and CH4 concentrations in air in a polar ice core

1993 ◽  
Vol 39 (132) ◽  
pp. 209-215 ◽  
Author(s):  
Takakiyo Nakazawa ◽  
Toshinobu Machida ◽  
Kenji Esumi ◽  
Masayuki Tanaka ◽  
Yoshiyuki Fujii ◽  
...  

AbstractDry and wet air-extraction systems and precise analysis systems of the CO2and CH4concentrations for a polar ice core were developed to reconstruct their ancient levels. A dry-extraction system was capable of crushing an ice sample of 1000 g into fine powder within 2 min, and its air-extraction efficiency was found to be 98%. The CO2and CH4concentrations of extracted air were determined using gas chromatography with a flame-ionized detector. The overall precision of our measurements, including air extraction, was estimated to be better than ± 1 ppmv for CO2and + 10 ppbv for CH4. Preliminary analysis of the ice core drilled at Mizuho Station, Antarctica, showed that the CO2and CH4concentrations at 3340–3700 year BP were about 280 ppmv and 700ppbv, respectively. The Yamato core drilled at the terminus of the glacial flow near the Yamato Mountains, Antarctica, yielded concentrations of 230–240 ppmv for CO2and 520–550 ppbv for CH4, suggesting that the core had formed during the glacial period.

1993 ◽  
Vol 39 (132) ◽  
pp. 209-215 ◽  
Author(s):  
Takakiyo Nakazawa ◽  
Toshinobu Machida ◽  
Kenji Esumi ◽  
Masayuki Tanaka ◽  
Yoshiyuki Fujii ◽  
...  

AbstractDry and wet air-extraction systems and precise analysis systems of the CO2 and CH4 concentrations for a polar ice core were developed to reconstruct their ancient levels. A dry-extraction system was capable of crushing an ice sample of 1000 g into fine powder within 2 min, and its air-extraction efficiency was found to be 98%. The CO2 and CH4 concentrations of extracted air were determined using gas chromatography with a flame-ionized detector. The overall precision of our measurements, including air extraction, was estimated to be better than ± 1 ppmv for CO2 and + 10 ppbv for CH4. Preliminary analysis of the ice core drilled at Mizuho Station, Antarctica, showed that the CO2 and CH4 concentrations at 3340–3700 year BP were about 280 ppmv and 700ppbv, respectively. The Yamato core drilled at the terminus of the glacial flow near the Yamato Mountains, Antarctica, yielded concentrations of 230–240 ppmv for CO2 and 520–550 ppbv for CH4, suggesting that the core had formed during the glacial period.


1994 ◽  
Vol 40 (136) ◽  
pp. 504-508 ◽  
Author(s):  
Michael Ram ◽  
Matthias Illing

Abstract We describe a new laser-light-scattering instrument for measuring variations in dust concentration along polar ice cores. We have used this instrument with considerable success on the GISP2 ice core from central Greenland. Reproducibility is excellent and the required ice-sample size is relatively small. When combined with visual stratigraphy and ECM, the distinct annual spring/ summer dust peaks we observe can be used to date the core with tree-ring-like precision.


1994 ◽  
Vol 40 (136) ◽  
pp. 504-508
Author(s):  
Michael Ram ◽  
Matthias Illing

AbstractWe describe a new laser-light-scattering instrument for measuring variations in dust concentration along polar ice cores. We have used this instrument with considerable success on the GISP2 ice core from central Greenland. Reproducibility is excellent and the required ice-sample size is relatively small. When combined with visual stratigraphy and ECM, the distinct annual spring/ summer dust peaks we observe can be used to date the core with tree-ring-like precision.


1990 ◽  
Vol 14 ◽  
pp. 195-198 ◽  
Author(s):  
J.C. Moore ◽  
J.G. Paren ◽  
R. Mulvaney

The dielectric stratigraphy of a 130 m ice core from Dolleman Island, Antarctic Peninsula, shows large variations in the dielectric relaxation process and in conductivity. A comparison with the chemical stratigraphy of the core demonstrates the decisive role played by both acids and salts in determining the electrical behaviour of natural ice. The dielectric response is sensitive both to the type of impurity and to its distribution within the ice fabric. The evidence supports other observations of the localization of sulphuric acid at three-grain boundaries: in contrast, the salt impurity appears to be largely incorporated into the ice lattice. The overriding importance of the dielectric profiling technique is that it is the only profiling tool so far developed that is sensitive to the presence of salt in polar ice cores.


1990 ◽  
Vol 14 ◽  
pp. 195-198
Author(s):  
J.C. Moore ◽  
J.G. Paren ◽  
R. Mulvaney

The dielectric stratigraphy of a 130 m ice core from Dolleman Island, Antarctic Peninsula, shows large variations in the dielectric relaxation process and in conductivity. A comparison with the chemical stratigraphy of the core demonstrates the decisive role played by both acids and salts in determining the electrical behaviour of natural ice. The dielectric response is sensitive both to the type of impurity and to its distribution within the ice fabric. The evidence supports other observations of the localization of sulphuric acid at three-grain boundaries: in contrast, the salt impurity appears to be largely incorporated into the ice lattice. The overriding importance of the dielectric profiling technique is that it is the only profiling tool so far developed that is sensitive to the presence of salt in polar ice cores.


2015 ◽  
Vol 61 (227) ◽  
pp. 585-594 ◽  
Author(s):  
Anais J. Orsi ◽  
Kenji Kawamura ◽  
John M. Fegyveresi ◽  
Melissa A. Headly ◽  
Richard B. Alley ◽  
...  

AbstractMelt layers are clear indicators of extreme summer warmth on polar ice caps. The visual identification of refrozen meltwater as clear bubble-free layers cannot be used to study some past warm periods, because, in deeper ice, bubbles are lost to clathrate formation. We present here a reliable method to detect melt events, based on the analysis of Kr/Ar and Xe/Ar ratios in ice cores, and apply it to the detection of melt in clathrate ice from the Eemian at NEEM, Greenland. Additionally, melt layers in ice cores can compromise the integrity of the gas record by dissolving soluble gases, or by altering gas transport in the firn, which affects the gas chronology. We find that the easily visible 1 mm thick bubble-free layers in the WAIS Divide ice core do not contain sufficient melt to alter the gas composition in the core, and do not cause artifacts or discontinuities in the gas chronology. The presence of these layers during winter, and the absence of anomalies in soluble gases, suggests that these layers can be formed by processes other than refreezing of meltwater. Consequently, the absence of bubbles in thin crusts is not in itself proof of a melt event.


Author(s):  
Benjamin A. Lindley ◽  
N. Zara Zainuddin ◽  
Fausto Franceschini ◽  
Geoffrey T. Parks

It is difficult to perform multiple recycle of transuranic (TRU) isotopes in PWRs as the moderator temperature coefficient (MTC) tends to become positive after a few recycles and the core may have positive reactivity when fully voided. Due to the favorable impact on the MTC and void coefficient fostered by use of thorium (Th), the possibility of performing Th-TRU multiple-recycle in reduced-moderation PWRs (RMPWRs) is under consideration. The simplest way to reduce the moderation in a PWR is to increase the fuel pin diameter. This configuration improves the trade-off between achievable burn-up and MTC, but is ultimately limited by thermal-hydraulic constraints. Heterogeneous recycle with the bred uranium (U3) and the TRU are arranged in separate pins was found to be neutronically preferable to a homogeneous configuration. Spatial separation also enables the U3 and TRU to be refueled on different batch schemes. These techniques allow satisfactory discharge burn-up while ensuring negative MTC and fully voided reactivity, with the pin diameter of a standard PWR increased from 9.5 mm to 11 mm. Reactivity control is a key challenge due to the reduced worth of neutron absorbers and their detrimental effect on the void coefficients, especially when diluted, as is the case for soluble boron. It seems necessary to control the core using control rods to keep the fully voided reactivity negative. A preliminary analysis indicates that this is feasible.


2004 ◽  
Vol 39 ◽  
pp. 540-544 ◽  
Author(s):  
Barbara T. Smith ◽  
Tas D. Van Ommen ◽  
Mark A. J. Curran

AbstractMethanesulphonic acid (MSA) is an important trace-ion constituent in ice cores, with connections to biological activity and sea-ice distribution. Post-depositional movement of MSA has been documented in firn, and this study investigates movement in solid ice by measuring variations in MSA distribution across several horizontal sections from an ice core after 14.5 years storage. The core used is from below the bubble close-off depth at Dome Summit South, Law Dome, East Antarctica. MSA concentration was studied at 3 and 0.5 cm resolution across the core widths. Its distribution was uniform through the core centres, but the outer 3 cm showed gradients in concentrations down to less than half of the central value at the core edge. This effect is consistent with diffusion to the surrounding air during its 14.5 year storage. The diffusion coefficient is calculated to be 2 ×10–13 m2 s–1, and the implications for the diffusion mechanism are discussed.


2009 ◽  
Vol 32 (1) ◽  
pp. 87-88 ◽  
Author(s):  
Wim De Neys

AbstractOaksford & Chater (O&C) rely on a data fitting approach to show that a Bayesian model captures the core reasoning data better than its logicist rivals. The problem is that O&C's modeling has focused exclusively on response output data. I argue that this exclusive focus is biasing their conclusions. Recent studies that focused on the processes that resulted in the response selection are more positive for the role of logic.


2011 ◽  
Vol 7 (1) ◽  
pp. 749-773 ◽  
Author(s):  
A. Svensson ◽  
M. Bigler ◽  
E. Kettner ◽  
D. Dahl-Jensen ◽  
S. Johnsen ◽  
...  

Abstract. The Greenland NGRIP ice core continuously covers the period from present day back to 123 ka before present, which includes several thousand years of ice from the previous interglacial period, MIS 5e or the Eemian. In the glacial part of the core annual layers can be identified from impurity records and visual stratigraphy, and stratigraphic layer counting has been performed back to 60 ka. In the deepest part of the core, however, the ice is close to the pressure melting point, the visual stratigraphy is dominated by crystal boundaries, and annual layering is not visible to the naked eye. In this study, we apply a newly developed setup for high-resolution ice core impurity analysis to produce continuous records of dust, sodium and ammonium concentrations as well as conductivity of melt water. We analyzed three 2.2 m sections of ice from the Eemian and the glacial inception. In all of the analyzed ice, annual layers can clearly be recognized, most prominently in the dust and conductivity profiles. Part of the samples is, however, contaminated in dust, most likely from drill liquid. It is interesting that the annual layering is preserved despite a very active crystal growth and grain boundary migration in the deep and warm NGRIP ice. Based on annual layer counting of the new records, we determine a mean annual layer thickness close to 11 mm for all three sections, which, to first order, confirms the modeled NGRIP time scale (ss09sea). The counting does, however, suggest a longer duration of the climatically warmest part of the NGRIP record (MIS5e) of up to 1 ka as compared to the model estimate. Our results suggest that stratigraphic layer counting is possible basically throughout the entire NGRIP ice core provided sufficiently highly-resolved profiles become available.


Sign in / Sign up

Export Citation Format

Share Document