Observations on the life-cycle of the strigeoid trematode, Apatemon (Apatemon) gracilis (Rudolphi, 1819) Szidat, 1928

1976 ◽  
Vol 50 (2) ◽  
pp. 125-132 ◽  
Author(s):  
David Blair

AbstractThe life-cycle of Apatemon (A.) gracilis was completed in the laboratory. The snail host is Lymnaeaperegra (Müller). The cercaria is redescribed from a wide range of material. Metacercariae were found in naturally infected rainbow trout (Salmo gairdneri Richardson), three-spined sticklebacks (Gasterosteus aculeatiis L.) and stone loach (Nemacheilus barbatulus (L.)) from Scotland and in three-spined sticklebacks from Iceland. In trout, most metacercariae were found in the pericardial cavity, in sticklebacks, the eye, and in loach, the body cavity. In infection experiments, cercariae from naturally infected Scottish snails developed in threespined sticklebacks, rainbow trout and brown trout (Salmo trutta L.). Under experimental conditions cercariae did not penetrate stone loach, although this species is naturally infected with A gracilis. The phenomenon of fish host specificity is briefly discussed. Development of the metacercaria is described. Excystation of metacercarial cysts with pepsin and trypsin solutions is unlike that reported for any other digenean; the contents of the cyst appear to be under pressure. In pepsin, layers of the cyst wall peel back from one end. When transferred to trypsin, one pole of the cyst ruptures and the worm is forcibly expelled.

1973 ◽  
Vol 47 (4) ◽  
pp. 389-398 ◽  
Author(s):  
R. Wootten

Brown and rainbow trout from Hanningf?eld Reservoir, Essex and rainbow trout from associated raceways were found to be infected with the metacercariae of Cotyluriis erraticus throughout 1968. Both o brown and rainbow trout of age 2+ introduced into the reservoir in the spring became heavily infected with C. erraticus during their first summer in the reservoir. Rainbow trout were more heavily infected than brown trout. Infection increased with age in rainbow trout but this was not apparent in brown trout. The metacercariae are almost completely restricted to the pericardial cavity of the trout. The life-cycle of C. erraticus in Hanningfield possibly involves gulls as final hosts and the gastropod Valvata piscinalis as first intermediate host. C. erraticus has probably been introduced into the reservoir in infected trout from outside sources, or by infected avian final hosts.


Author(s):  
Giselle Balaguer-Da´tiz ◽  
Nikhil Krishnan

The management of municipal solid wastes (MSW) in Puerto Rico is becoming increasingly challenging. In recent years, several of the older landfills have closed due to lack of compliance with federal landfill requirements. Puerto Rico is an island community and there is limited space for construction of new landfills. Furthermore, Puerto Rico residents generate more waste per capita than people living on the continental US. Thermal treatment, or waste to energy (WTE) technologies are therefore a promising option for MSW management. It is critical to consider environmental impacts when making decisions related to MSW management. In this paper we quantify and compare the environmental implications of thermal treatment of MSW with modern landfilling for Puerto Rico from a life cycle perspective. The Caguas municipality is currently considering developing a thermal treatment plant. We compare this to an expansion of a landfill site in the Humacao municipality, which currently receives waste from Caguas. The scope of our analysis includes a broad suite of activities associated with management of MSW. We include: (i) the transportation of MSW; (ii) the impacts of managing waste (e.g., landfill gas emissions and potential aqueous run-off with landfills; air emissions of metals, dioxins and greenhouse gases) and (iii) the implications of energy and materials offsets from the waste management process (e.g., conversion of landfill gas to electricity, electricity produced in thermal treatment, and materials recovered from thermal treatment ash). We developed life cycle inventory models for different waste management processes, incorporating information from a wide range of sources — including peer reviewed life cycle inventory databases, the body of literature on environmental impact of waste management, and site-specific factors for Puerto Rico (e.g. waste composition, rainfall patterns, electricity mix). We managed uncertainty in data and models by constructing different scenarios for both technologies based on realistic ranges of emission factors. The results show that thermal treatment of the unrecyclable part of the waste stream is the preferred option for waste management when compared to modern landfilling. Furthermore, Eco-indicator 99 method is used to investigate the human health, ecosystem quality and resource use impact categories.


1976 ◽  
Vol 65 (1) ◽  
pp. 157-177 ◽  
Author(s):  
P. W. Webb

The fast-start (acceleration) performance of seven groups of rainbow trout from 9-6 to 38-7 cm total length was measured in response to d.c. electric shock stimuli. Two fast-start kinematic patterns, L- and S-start were observed. In L-starts the body was bent into an L or U shape and a recoil turn normally accompanied acceleration. Free manoeuvre was not possible in L-starts without loss of speed. In S-starts the body was bent into an S-shape and fish accelerated without a recoil turn. The frequency of S-starts increased with size from 0 for the smallest fish to 60–65% for the largest fish. Acceleration turns were common. The radius of smallest turn for both fast-start patterns was proportional to length (L) with an overall radius of 0–17 L. The duration of the primary acceleration stages increased with size from 0–07 s for the group of smallest fish to 0–10 s for the group of largest fish. Acceleration rates were independent of size. The overall mean maximum rate was 3438 cm/s2 and the average value to the end of the primary acceleration movements was 1562 cm/s2. The distance covered and velocity attained after a given time for fish accelerating from rest were independent of size. The results are discussed in the context of interactions between a predator and prey fish following initial approach by the predator. It is concluded that the outcome of an interaction is likely to depend on reaction times of interacting fish responding to manoeuvres initiated by the predator or prey. The prey reaction time results in the performance of the predator exceeding that of the prey at any instant. The predator reaction time and predator error in responses to unpredictable prey manoeuvre are required for prey escape. It is predicted that a predator should strike the prey within 0-1 s if the fish are initially 5–15 cm apart as reported in the literature for predator-prey interactions. These distances would be increased for non-optimal prey escape behaviour and when the prey body was more compressed or depressed than the predator.


1983 ◽  
Vol 40 (10) ◽  
pp. 1745-1749 ◽  
Author(s):  
J. R. Irvine ◽  
T. G. Northcote

Underyearling rainbow trout (Salmo gairdneri) in experimental stream tanks presented with live and dead prey preferred live prey. Trout fry generally were size selective predators and previous feeding experience did not affect the size of prey consumed. When a wide range of prey sizes was offered, larger trout fry fed upon bigger prey than did smaller fry. Cyclops were underrepresented in trout fry stomachs relative to Daphnia of similar size.


1979 ◽  
Vol 36 (11) ◽  
pp. 1370-1376 ◽  
Author(s):  
Douglas L. Mitchum ◽  
Loris E. Sherman ◽  
George T. Baxter

Incidence and effects of bacterial kidney disease (BKD) were determined in wild, naturally reproducing populations of brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Salmo gairdneri) in a small lake and stream system in southeastern Wyoming, USA where BKD epizootics have been observed since 1972. During 1976, dead fish were collected at three upstream stations, and 60 live fish were collected from each of 11 stations. All fish were necropsied, and virological, bacteriological, and parasitological examinations were conducted by standard methods. An indirect fluorescent antibody technique was used to detect the BKD organism in cultures and kidney tissue smears. Bacterial kidney disease was diagnosed in 100% of the dead brook trout collected. Incidence among live fish ranged from 83% at an upstream station to only 3% at the most downstream location, and was highest in brook trout and lowest in rainbow trout. Two longnose suckers (Catostomus catostomus), the only non-salmonids collected, were found negative for BKD. Clinical signs of infection and the most severe infections were found only in brook trout. Five age-classes of feral brook trout were involved in the epizootics. Since other known pathogens were essentially absent, it is believed that all deaths were due to BKD. Relationships between species susceptibility to BKD, age-classes, water chemistry and water temperatures, and certain ecological conditions are discussed. Key words: bacterial kidney disease, feral trout, epizootics, brook trout, brown trout, rainbow trout


1978 ◽  
Vol 56 (7) ◽  
pp. 1514-1518 ◽  
Author(s):  
Patrick T. K. Woo

Cryptobia salmositica was isolated from its vector, Piscicola salmositica, which was collected from spawning salmon. The organisms were first injected into coho salmon and then maintained in rainbow trout. The process of multiplication is described from Giemsa's stained smears. The first stage of division is the production of two new flagella (one long and one short). This is followed by nuclear division which is not completed until kinetoplast division is completed. Body division commences from the posterior end soon after the long flagellum attaches to the body. Following this, the nucleus, the kinetoplast, and the blepharoplast migrate into the newly divided part of the organism. Final body division is completed after the migration of these organelles. Multiplication of C. salmositica is by unequal longitudinal binary fission.


Sign in / Sign up

Export Citation Format

Share Document