scholarly journals The mitochondrial genome of Dipetalonema gracile from a squirrel monkey in China

2018 ◽  
Vol 94 ◽  
Author(s):  
P. Zhang ◽  
R.K. Ran ◽  
A.Y. Abdullahi ◽  
X.L. Shi ◽  
Y. Huang ◽  
...  

AbstractDipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242541
Author(s):  
Lvpei Du ◽  
Shanya Cai ◽  
Jun Liu ◽  
Ruoyu Liu ◽  
Haibin Zhang

Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dawei Liu ◽  
Yongwu Zhou ◽  
Yiling Fei ◽  
Chunping Xie ◽  
Senlin Hou

AbstractHistorically, the diving duck, Baer’s Pochard (Aythya baeri) was widely distributed in East and South Asia, but according to a recent estimate, its global population is now less than 1000 individuals. To date, the mitochondrial genome of A. baeri has not been deposited and is not available in GenBank. Therefore, we aimed to sequence the complete mitochondrial genome of this species. The genome was 16,623 bp in length, double stranded, circular in shape, and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one non-coding control region. Many structural and compositional similarities were discovered between A. baeri and the other three Aythya mitochondrial genomes. Among 13 protein-coding genes of the four Aythya species, the fastest-evolving gene was ATP8 while the slowest-evolving gene was COII. Furthermore, the phylogenetic tree of Anatidae based on Bayesian inference and maximum likelihood methods showed that the relationships among 15 genera of the Anatidae family were as follows: Dendrocygna was an early diverging lineage that was fairly distant from the other ingroup taxa; Cygnus, Branta, and Anser were clustered into one branch that corresponded to the Anserinae subfamily; and Aythya, Asarcornis, Netta, Anas, Mareca, Mergus, Lophodytes, Bucephala, Tadorna, Cairina, and Aix were clustered into another branch that corresponded to the Anatinae subfamily. Our target species and three other Aythya species formed a monophyletic group. These results provide new mitogenomic information to support further phylogenetic and taxonomic studies and genetic conservation of Anatidae species.


2015 ◽  
Vol 63 (2) ◽  
pp. 111 ◽  
Author(s):  
Anna J. MacDonald ◽  
Theresa Knopp ◽  
Mitzy Pepper ◽  
J. Scott Keogh ◽  
Stephen D. Sarre

The Pygopodidae comprise an enigmatic group of legless lizards endemic to the Australo-Papuan region. Here we present the first complete mitochondrial genome for a member of this family, Aprasia parapulchella, from Australia. The mitochondrial genome of A. parapulchella is 16 528 base pairs long and contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes and the control region, conforming to the typical vertebrate gene order. The overall mitochondrial nucleotide composition is 31.7% A, 24.5% T, 30.5% C and 13.2% G. This corresponds to a total A+T content of 56.3%, which is similar to that of other squamate lizard genomes.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 769
Author(s):  
Pattayampadam Ramakrishnan Shidhi ◽  
Vadakkemukadiyil Chellappan Biju ◽  
Sasi Anu ◽  
Chandrasekharan Laila Vipin ◽  
Kumar Raveendran Deelip ◽  
...  

Mitogenome sequencing provides an understanding of the evolutionary mechanism of mitogenome formation, mechanisms driving plant gene order, genome structure, and migration sequences. Data on the mitochondrial genome for family Convolvulaceae members is lacking. E. alsinoides, also known as shankhpushpi, is an important medicinal plant under the family Convolvulaceae, widely used in the Ayurvedic system of medicine. We identified the mitogenome of E. alsinoides using the Illumina mate-pair sequencing platform, and annotated using bioinformatics approaches in the present study. The mitogenome of E. alsinoides was 344184 bp in length and comprised 46 unique coding genes, including 31 protein-coding genes (PCGs), 12 tRNA genes, and 3 rRNA genes. The secondary structure of tRNAs shows that all the tRNAs can be folded into canonical clover-leaf secondary structures, except three trnW, trnG, and trnC. Measurement of the skewness of the nucleotide composition showed that the AT and GC skew is positive, indicating higher A’s and G’s in the mitogenome of E. alsinoides. The Ka/Ks ratios of 11 protein-coding genes (atp1, ccmC, cob, cox1, rps19, rps12, nad3, nad9, atp9, rpl5, nad4L) were <1, indicating that these genes were under purifying selection. Synteny and gene order analysis were performed to identify homologous genes among the related species. Synteny blocks representing nine genes (nad9, nad2, ccmFc, nad1, nad4, nad5, matR, cox1, nad7) were observed in all the species of Solanales. Gene order comparison showed that a high level of gene rearrangement has occurred among all the species of Solanales. The mitogenome data obtained in the present study could be used as the Convolvulaceae family representative for future studies, as there is no complex taxonomic history associated with this plant.


ZooKeys ◽  
2020 ◽  
Vol 1005 ◽  
pp. 57-72
Author(s):  
I-Chen Wang ◽  
Hung-Du Lin ◽  
Chih-Ming Liang ◽  
Chi-Chun Huang ◽  
Rong-Da Wang ◽  
...  

The cyprinid genus Onychostoma Günther, 1896 consists of 24 valid species distributed in Southeast Asia, including Taiwan, Hainan, mainland China and the Indochina region. In the present study, we determined the complete mitochondrial genome of O. lepturum, which is 16,598 bp in length, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region (D-loop). To verify the molecular phylogeny of the subfamily Acrossocheilinae, we provide new insights to better understand the taxonomic status of Acrossocheilus, Onychostoma and Folifer brevifilis. The phylogenetic trees presented three major clades based on the 13 protein-coding genes from 28 Acrossocheilinae species. Clades I and II represent the Onychostoma and Acrossocheilus groups, respectively. Species of Acrossocheilus, Onychostoma and F. brevifilis are included in Clade III, which is considered as an ancestral group. This work provides genomic variation information and improves our understanding of the Acrossocheilinae mitogenome, which will be most valuable in providing new insights for phylogenetic analysis and population genetics research.


2020 ◽  
Author(s):  
Guohong Cai ◽  
Steven R. Scofield

ABSTRACTPhytophthora sansomeana infects soybean and causes root rot. It was recently separated from the species complex P. megasperma sensu lato. In this study, we sequenced and annotated its complete mitochondrial genome and compared it to that of nine other Phytophthora species. The genome was assembled into a circular molecule of 39,618 bp with a 22.03% G+C content. Forty-two protein coding genes, 25 tRNA genes and two rRNA genes were annotated in this genome. The protein coding genes include 14 genes in the respiratory complexes, four ATP synthetase genes, 16 ribosomal proteins genes, a tatC translocase gene, six conserved ORFs and a unique orf402. The tRNA genes encode tRNAs for 19 amino acids. Comparison among mitochondrial genomes of 10 Phytophthora species revealed three inversions, each covering multiple genes. These genomes were conserved in gene content with few exceptions. A 3’ truncated atp9 gene was found in P. nicotianae. All 10 Phytophthora species, as well as other oomycetes and stramenopiles, lacked tRNA genes for threonine in their mitochondria. Phylogenomic analysis using the mitochondrial genomes supported or enhanced previous findings of the phylogeny of Phytophthora spp.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7532 ◽  
Author(s):  
Yin-Yin Cai ◽  
Shi-Qi Shen ◽  
Li-Xu Lu ◽  
Kenneth B. Storey ◽  
Dan-Na Yu ◽  
...  

The family Pyxicephalidae including two subfamilies (Cacosterninae and Pyxicephalinae) is an ecologically important group of frogs distributed in sub-Saharan Africa. However, its phylogenetic position among the Anura has remained uncertain. The present study determined the complete mitochondrial genome sequence of Pyxicephalus adspersus, the first representative mitochondrial genome from the Pyxicephalinae, and reconstructed the phylogenetic relationships within Ranoidae using 10 mitochondrial protein-coding genes of 59 frog species. The P. adspersus mitochondrial genome showed major gene rearrangement and an exceptionally long length that is not shared with other Ranoidae species. The genome is 24,317 bp in length, and contains 15 protein-coding genes (including extra COX3 and Cyt b genes), four rRNA genes (including extra 12S rRNA and 16S rRNA genes), 29 tRNA genes (including extra tRNALeu (UAG), tRNALeu (UUR), tRNAThr, tRNAPro, tRNAPhe, tRNAVal, tRNAGln genes) and two control regions (CRs). The Dimer-Mitogenome and Tandem duplication and random loss models were used to explain these gene arrangements. Finally, both Bayesian inference and maximum likelihood analyses supported the conclusion that Pyxicephalidae was monophyletic and that Pyxicephalidae was the sister clade of (Petropedetidae + Ptychadenidae).


Nematology ◽  
2014 ◽  
Vol 16 (10) ◽  
pp. 1167-1180 ◽  
Author(s):  
Longhua Sun ◽  
Kan Zhuo ◽  
Honghong Wang ◽  
Handa Song ◽  
Wenwei Chi ◽  
...  

The complete mitochondrial genome (mitogenome) ofAphelenchoides besseyiis 16 216 bp in size and has the typical organisation of nematode mitogenomes of Chromadorea, including 12 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and the AT-rich non-coding region. The nucleotide composition of the mitogenome ofA. besseyiis AT-biased (80.0%) and the AT skew is −0.289. The most common start codon forA. besseyiis ATT. Thenad3andnad4Lgenes have an incomplete stop codon consisting of just a T and the other PCGs stop with the full stop codons. All the tRNA genes display a non-typical cloverleaf structure of mitochondrial tRNA. The AT-rich non-coding region contains ten tandem repeat units with four different regions. Phylogenetic analysis based on concatenated amino acid sequences of 12 protein-coding genes showed that three Tylenchomorpha species, includingA. besseyi,Bursaphelenchus mucronatusandB. xylophilusfrom the superfamily Aphelenchoidea, are placed within a well-supported monophyletic clade, but far from the other six Tylenchomorpha speciesMeloidogyne chitwoodi,M. graminicola,M. incognita,Pratylenchus vulnus,Heterodera glycinesandRadopholus similisof Tylenchoidea. This phylogeny suggests thatAphelenchoideshas a close relative relationship withBursaphelenchusand that the Tylenchomorpha is not monophyletic.


2021 ◽  
Author(s):  
Gautam Kumar Deb ◽  
Razia Khatun ◽  
Shakh Mohammed Jahangir Hossain ◽  
Shamsur Rahaman ◽  
Md. Anamul Bahar Bhuiyan ◽  
...  

Abstract Background: Complete mitochondrial genome of Bos frontalis will aid in the investigation of evolutionary links between closely related species. Bos frontalis mitogenome contains 37 genes and a control region. We discover the first complete mitogenome of Bos frontalis found in Bangladesh which was obtained from whole-genome sequencing of Bos frontalis.Results: Bos frontalis mitogenome is 16,347 bp long, with an AT-based nucleotide composition (60.21%). It contains 37 genes, including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a control region (D-loop). This circular genome starts with ND6(negative strand) and ends at ND5(positive strand). Protein coding genes lost 24 bases and tRNA genes gained 27 bases compared to closely related species. Phylogenetic analysis of the mitochondrial genome of 26 closely related species from 8 congeneric species was conducted by the maximum likelihood method with 1000 bootstrap iteration.Conclusion: Our studied Bos frontalis mitochondrial genome has a similar gene arrangement compared with other Bos species. It has almost the same amount of AT and GC content, but notably the ND6 gene lacks AT skew and GC skew than that of the other two comparing species. PCG’s loss in size might be a continuous process of evolution. The mitochondrial genome is regarded as a critical tool for species identification and monitoring populations of conservation concern.


ZooKeys ◽  
2020 ◽  
Vol 995 ◽  
pp. 67-80
Author(s):  
Guolei Sun ◽  
Chao Zhao ◽  
Tian Xia ◽  
Qinguo Wei ◽  
Xiufeng Yang ◽  
...  

Mitochondrial DNA is a useful molecular marker for phylogenetic and evolutionary analysis. In the current study, we determined the complete mitochondrial genome of Eophona personata, the Japanese Grosbeak, and the phylogenetic relationships of E. personata and 16 other species of the family Fringillidae based on the sequences of 12 mitochondrial protein-coding genes. The mitochondrial genome of E. personata consists of 16,771 base pairs, and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and one control region. Analysis of the base composition revealed an A+T bias, a positive AT skew and a negative GC skew. The mitochondrial gene order and arrangement in E. personata was similar to the typical avian mitochondrial gene arrangement. Phylogenetic analysis of 17 species of Fringillidae, based on Bayesian inference and Maximum Likelihood (ML) estimation, showed that the genera Coccothraustes and Hesperiphona are closely related to the genus Eophona, and further showed a sister-group relationship of E. personata and E. migratoria.


Sign in / Sign up

Export Citation Format

Share Document