The first complete mitochondrial genome of Pygopodidae (Aprasia parapulchella Kluge)

2015 ◽  
Vol 63 (2) ◽  
pp. 111 ◽  
Author(s):  
Anna J. MacDonald ◽  
Theresa Knopp ◽  
Mitzy Pepper ◽  
J. Scott Keogh ◽  
Stephen D. Sarre

The Pygopodidae comprise an enigmatic group of legless lizards endemic to the Australo-Papuan region. Here we present the first complete mitochondrial genome for a member of this family, Aprasia parapulchella, from Australia. The mitochondrial genome of A. parapulchella is 16 528 base pairs long and contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes and the control region, conforming to the typical vertebrate gene order. The overall mitochondrial nucleotide composition is 31.7% A, 24.5% T, 30.5% C and 13.2% G. This corresponds to a total A+T content of 56.3%, which is similar to that of other squamate lizard genomes.

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 769
Author(s):  
Pattayampadam Ramakrishnan Shidhi ◽  
Vadakkemukadiyil Chellappan Biju ◽  
Sasi Anu ◽  
Chandrasekharan Laila Vipin ◽  
Kumar Raveendran Deelip ◽  
...  

Mitogenome sequencing provides an understanding of the evolutionary mechanism of mitogenome formation, mechanisms driving plant gene order, genome structure, and migration sequences. Data on the mitochondrial genome for family Convolvulaceae members is lacking. E. alsinoides, also known as shankhpushpi, is an important medicinal plant under the family Convolvulaceae, widely used in the Ayurvedic system of medicine. We identified the mitogenome of E. alsinoides using the Illumina mate-pair sequencing platform, and annotated using bioinformatics approaches in the present study. The mitogenome of E. alsinoides was 344184 bp in length and comprised 46 unique coding genes, including 31 protein-coding genes (PCGs), 12 tRNA genes, and 3 rRNA genes. The secondary structure of tRNAs shows that all the tRNAs can be folded into canonical clover-leaf secondary structures, except three trnW, trnG, and trnC. Measurement of the skewness of the nucleotide composition showed that the AT and GC skew is positive, indicating higher A’s and G’s in the mitogenome of E. alsinoides. The Ka/Ks ratios of 11 protein-coding genes (atp1, ccmC, cob, cox1, rps19, rps12, nad3, nad9, atp9, rpl5, nad4L) were <1, indicating that these genes were under purifying selection. Synteny and gene order analysis were performed to identify homologous genes among the related species. Synteny blocks representing nine genes (nad9, nad2, ccmFc, nad1, nad4, nad5, matR, cox1, nad7) were observed in all the species of Solanales. Gene order comparison showed that a high level of gene rearrangement has occurred among all the species of Solanales. The mitogenome data obtained in the present study could be used as the Convolvulaceae family representative for future studies, as there is no complex taxonomic history associated with this plant.


2018 ◽  
Vol 94 ◽  
Author(s):  
P. Zhang ◽  
R.K. Ran ◽  
A.Y. Abdullahi ◽  
X.L. Shi ◽  
Y. Huang ◽  
...  

AbstractDipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242541
Author(s):  
Lvpei Du ◽  
Shanya Cai ◽  
Jun Liu ◽  
Ruoyu Liu ◽  
Haibin Zhang

Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dawei Liu ◽  
Yongwu Zhou ◽  
Yiling Fei ◽  
Chunping Xie ◽  
Senlin Hou

AbstractHistorically, the diving duck, Baer’s Pochard (Aythya baeri) was widely distributed in East and South Asia, but according to a recent estimate, its global population is now less than 1000 individuals. To date, the mitochondrial genome of A. baeri has not been deposited and is not available in GenBank. Therefore, we aimed to sequence the complete mitochondrial genome of this species. The genome was 16,623 bp in length, double stranded, circular in shape, and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one non-coding control region. Many structural and compositional similarities were discovered between A. baeri and the other three Aythya mitochondrial genomes. Among 13 protein-coding genes of the four Aythya species, the fastest-evolving gene was ATP8 while the slowest-evolving gene was COII. Furthermore, the phylogenetic tree of Anatidae based on Bayesian inference and maximum likelihood methods showed that the relationships among 15 genera of the Anatidae family were as follows: Dendrocygna was an early diverging lineage that was fairly distant from the other ingroup taxa; Cygnus, Branta, and Anser were clustered into one branch that corresponded to the Anserinae subfamily; and Aythya, Asarcornis, Netta, Anas, Mareca, Mergus, Lophodytes, Bucephala, Tadorna, Cairina, and Aix were clustered into another branch that corresponded to the Anatinae subfamily. Our target species and three other Aythya species formed a monophyletic group. These results provide new mitogenomic information to support further phylogenetic and taxonomic studies and genetic conservation of Anatidae species.


Zootaxa ◽  
2012 ◽  
Vol 3537 (1) ◽  
pp. 29 ◽  
Author(s):  
LI LIU ◽  
HU LI ◽  
FAN SONG ◽  
WEN SONG ◽  
XUN DAI ◽  
...  

The nearly complete mitochondrial genome of Coridius chinensis (Dallas) is reported in this study. The mitogenome is a double-stranded circular molecule of more than 14,648 bp in length with an A+T content of 75.1%. It encoded 37 genes as in other insect mtDNAs, including 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes and a control region (unsuccessful sequencing), and the gene order is the same as most other known heteropteran mitogenomes. All of the 22 transfer RNAs can be folded into the typical cloverleaf structure except tRNASer(AGN), which can only form a simple loop at the site of dihydrouridine (DHU) arm as known in other metazoans. The secondary structures of the large and small ribosomal RNAs of C. chinensis are similar to other presented insects. The rrnL consisted of six structural domains and 40 helices, and the rrnS consisted of three structural domains and 26 helices. Nine PCGs are initiated with the standard initiation codons (ATN), while ND6 and ND1 use GTG, and COI and ATP8 use TTG. All PCGs stopped with TAA/TAG termination codons except the COII terminated with a single T residue. Asymmetry in the nucleotide composition between J-strand and N-strand was observed in this mitogenome.


ZooKeys ◽  
2020 ◽  
Vol 1005 ◽  
pp. 57-72
Author(s):  
I-Chen Wang ◽  
Hung-Du Lin ◽  
Chih-Ming Liang ◽  
Chi-Chun Huang ◽  
Rong-Da Wang ◽  
...  

The cyprinid genus Onychostoma Günther, 1896 consists of 24 valid species distributed in Southeast Asia, including Taiwan, Hainan, mainland China and the Indochina region. In the present study, we determined the complete mitochondrial genome of O. lepturum, which is 16,598 bp in length, containing 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region (D-loop). To verify the molecular phylogeny of the subfamily Acrossocheilinae, we provide new insights to better understand the taxonomic status of Acrossocheilus, Onychostoma and Folifer brevifilis. The phylogenetic trees presented three major clades based on the 13 protein-coding genes from 28 Acrossocheilinae species. Clades I and II represent the Onychostoma and Acrossocheilus groups, respectively. Species of Acrossocheilus, Onychostoma and F. brevifilis are included in Clade III, which is considered as an ancestral group. This work provides genomic variation information and improves our understanding of the Acrossocheilinae mitogenome, which will be most valuable in providing new insights for phylogenetic analysis and population genetics research.


2020 ◽  
Author(s):  
Guohong Cai ◽  
Steven R. Scofield

ABSTRACTPhytophthora sansomeana infects soybean and causes root rot. It was recently separated from the species complex P. megasperma sensu lato. In this study, we sequenced and annotated its complete mitochondrial genome and compared it to that of nine other Phytophthora species. The genome was assembled into a circular molecule of 39,618 bp with a 22.03% G+C content. Forty-two protein coding genes, 25 tRNA genes and two rRNA genes were annotated in this genome. The protein coding genes include 14 genes in the respiratory complexes, four ATP synthetase genes, 16 ribosomal proteins genes, a tatC translocase gene, six conserved ORFs and a unique orf402. The tRNA genes encode tRNAs for 19 amino acids. Comparison among mitochondrial genomes of 10 Phytophthora species revealed three inversions, each covering multiple genes. These genomes were conserved in gene content with few exceptions. A 3’ truncated atp9 gene was found in P. nicotianae. All 10 Phytophthora species, as well as other oomycetes and stramenopiles, lacked tRNA genes for threonine in their mitochondria. Phylogenomic analysis using the mitochondrial genomes supported or enhanced previous findings of the phylogeny of Phytophthora spp.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7532 ◽  
Author(s):  
Yin-Yin Cai ◽  
Shi-Qi Shen ◽  
Li-Xu Lu ◽  
Kenneth B. Storey ◽  
Dan-Na Yu ◽  
...  

The family Pyxicephalidae including two subfamilies (Cacosterninae and Pyxicephalinae) is an ecologically important group of frogs distributed in sub-Saharan Africa. However, its phylogenetic position among the Anura has remained uncertain. The present study determined the complete mitochondrial genome sequence of Pyxicephalus adspersus, the first representative mitochondrial genome from the Pyxicephalinae, and reconstructed the phylogenetic relationships within Ranoidae using 10 mitochondrial protein-coding genes of 59 frog species. The P. adspersus mitochondrial genome showed major gene rearrangement and an exceptionally long length that is not shared with other Ranoidae species. The genome is 24,317 bp in length, and contains 15 protein-coding genes (including extra COX3 and Cyt b genes), four rRNA genes (including extra 12S rRNA and 16S rRNA genes), 29 tRNA genes (including extra tRNALeu (UAG), tRNALeu (UUR), tRNAThr, tRNAPro, tRNAPhe, tRNAVal, tRNAGln genes) and two control regions (CRs). The Dimer-Mitogenome and Tandem duplication and random loss models were used to explain these gene arrangements. Finally, both Bayesian inference and maximum likelihood analyses supported the conclusion that Pyxicephalidae was monophyletic and that Pyxicephalidae was the sister clade of (Petropedetidae + Ptychadenidae).


2020 ◽  
Vol 145 (2) ◽  
Author(s):  
Fei Ye ◽  
Ting Liu ◽  
Wenbo Zhu ◽  
Ping You

The complete mitochondrial genome of Whitmania laevis is 14,442 bp in length and contains 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and two ribosomal RNA (rRNA) genes. The almost-complete mitochondrial genome of Whitmania acranulata, consisting of 13,494 bp, contains 35 genes including 13 PCGs, 20 tRNA genes, and two rRNA genes. COI phylogenetic analyses showed that the samples reported in GenBank and analysed as Hirudo nipponia KC667144, Hirudinaria manillensis KC688268 and Erpobdella octoculata KC688270 are not the named species and they should belong to Whitmania. We compared and analyzed the characteristics of nucleotide composition, codon usage, and secondary structures of 22 tRNAs and two rRNAs from Whitmania taxa. Moreover, we analyzed phylogenetic relationships of Annelida using maximum likelihood (ML) and Bayesian inference (BI) methods, based on 11 mitochondrial genes. Our results reveal that W. laevis has a close relationship with W. pigra.


2020 ◽  
Author(s):  
GK Deb ◽  
R Khatun ◽  
SMJ Hossain ◽  
SS Rahman ◽  
MAB Bhuiyan ◽  
...  

AbstractThe Gayal is a large-sized endangered semi-domesticated bovine species belonging to the family Bovidae, tribe Bovini, group Bovina, genus Bos, and species Bos frontalis. It is also called the Mithan or Mithun. Mitochondrial genome is considered as an important tool for species identification and monitoring the populations of conservation concern and therefore it becomes an obligation to sequence the mitochondrial genome of Bagladeshi gayal. We want to identify some important genes related to a particular trait such as those associated with adaptation, muscle strength, or prolificacy. The data will help explore evolutionary relationships with closely related species. The mitogenome of Bos frontalis is 16,347 bp in length and nucleotide composition is AT-based (60.21%), contains 37 genes including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a control region.


Sign in / Sign up

Export Citation Format

Share Document