Cyclotron effects on wave dispersion in pulsar plasmas

2000 ◽  
Vol 64 (4) ◽  
pp. 333-352 ◽  
Author(s):  
M. P. KENNETT ◽  
D. B. MELROSE ◽  
Q. LUO

Dispersion in an intrinsically relativistic, one-dimensional, electron–positron pair plasma (a pulsar plasma) is treated exactly, generalizing earlier results that applied in the low-frequency limit and that neglected the cyclotron resonance. The general theory involves two additional relativistic plasma dispersion functions, evaluated at the normal and anomalous Doppler resonances. These two functions are associated with the non-gyrotropic and gyrotropic parts of the response respectively. The functions are evaluated for bell-type and Jüttner distributions. Wave dispersion is discussed for a non-gyrotropic pulsar plasma with a highly relativistic Alfvén speed. Emphasis is placed on crossings of the light line, defined in terms of the parallel phase velocity. Subluminal waves exist only for sufficiently small angles of propagation, and are confined to frequencies below about the mean gyrofrequency of the relativistic particles.

1999 ◽  
Vol 62 (2) ◽  
pp. 233-248 ◽  
Author(s):  
D. B. MELROSE ◽  
M. E. GEDALIN ◽  
M. P. KENNETT ◽  
C. S. FLETCHER

The properties of a relativistic plasma dispersion function (RPDF) for an intrinsically extremely relativist, strongly magnetized, one-dimensional, electron–positron plasma are discussed in detail. For a plasma with a mean Lorentz factor 〈γ〉 [Gt ] 1 in its rest frame, the RPDF has a large peak >〈γ〉 at a phase speed a fraction of order 1/〈γ〉 below the speed of light, and the asymptotic value (infinite phase speed) is 〈γ−3〉 ∼ 1/〈γ〉. These features are not particularly sensitive to the choice of distribution function. The RPDF is used to discuss the properties of waves in such plasmas. Particular points discussed are the implications of the RPDF for the maximum frequency for parallel Langmuir waves, and for the reconnection between the Langmuir mode and the Alfvén mode.


2016 ◽  
Vol 688 ◽  
pp. 012010 ◽  
Author(s):  
Hui Chen ◽  
J. Bonlie ◽  
R. Cauble ◽  
F. Fiuza ◽  
W. Goldstein ◽  
...  

1987 ◽  
Vol 125 ◽  
pp. 450-450
Author(s):  
S. Shibata

Pulsar may be regarded as a discharge tube by electron-positron pair creation. On this viewpoint we carry out two numerical calculations. The obtained magnetic field is consistent with the flow. We find that pulsars emit their rotational energy through three modes simultaneously. The three modes are (1)relativistic acceleration and following gamma-ray emission in the closed current circuit in the magnetosphere, (2)wind of the electron-positron pair plasma, and (3)dipole radiation.


1998 ◽  
Vol 188 ◽  
pp. 402-403
Author(s):  
Y. Tajima ◽  
J. Fukue

The accretion disks are now supposed to be the main driving source of the active astrophysical phenomena. Even the electron-positron pair plasma will be created at the surface of the sufficiently luminous disk. While the effect of radiation drag which causes in the intense radiation fields around the accretion disk is examined recently. Then, we numerically consider the radiative accelerated pair-winds, which blow off from central luminous accretion disk surrounding a black hole, taking into account radiation drag of the order of v/c.


2011 ◽  
Vol 106 (10) ◽  
Author(s):  
E. N. Nerush ◽  
I. Yu. Kostyukov ◽  
A. M. Fedotov ◽  
N. B. Narozhny ◽  
N. V. Elkina ◽  
...  

1997 ◽  
Vol 58 (2) ◽  
pp. 345-366 ◽  
Author(s):  
QINGHUAN LUO ◽  
D. B. MELROSE

The effect of a beam of radio waves of very high brightness passing through a cold, magnetized, electron–positron plasma is discussed. The properties of the natural wave modes in such a plasma are summarized, and approximate forms for the nonlinear response tensor are written down. Photon-beam-induced instabilities of low-frequency waves in the pair plasma are analysed in the random-phase approximation. When three-wave interactions involve two high-frequency waves in the same mode and a low-frequency wave in a different mode, wave–wave interactions are similar to wave–particle interactions in that photons act like particles that emit and absorb low-frequency waves. The absorption coefficients for various low-frequency waves due to a photon beam are evaluated. In a pure electron–positron plasma, photon-beam-induced instabilities can be effective only when either the high-frequency or the low-frequency waves are strongly modified by the magnetic field. The growth of the low-frequency waves is most effective when the high-frequency photon beam has a frequency close to the cyclotron frequency.


2008 ◽  
Vol 74 (1) ◽  
pp. 91-97 ◽  
Author(s):  
J. T. MENDONÇA ◽  
J. E. RIBEIRO ◽  
P. K. SHUKLA

AbstractThe dispersion relation for a quantum pair plasma is derived, by using a wave kinetic description. A general form of the kinetic dispersion relation for electrostatic waves in a two-component quantum plasma is established. The particular case of an electron–positron pair plasma is considered in detail. Exact expressions for Landau damping are derived, and the quasi-classical limit is discussed.


1975 ◽  
Vol 42 (1) ◽  
pp. 159-164 ◽  
Author(s):  
W. Kohn

This paper is a generalization to three dimensions of an earlier study for one-dimensional composites. We show here that in the limit of low frequencies the displacement vector ui(r,t) can be written in the form ui (r,t) = (∂ij + vijl (r) ∂/∂xl + …) Uj (r,t). Here Uj (r,t) is a slowly varying vector function of r and t which describes the mean displacement of each cell of the composite. Its components satisfy a set of three coupled partial differential equations with constant coefficients. These coefficients are obtainable from the three-by-three secular equation which yields the low-lying normal mode frequencies, ω(k). Information about local strains is contained in the function vijl(r), which is characteristic of static deformations, and is discussed in detail. Among applications of this method is the structure of the head of a pulse propagating in an arbitrary direction.


Sign in / Sign up

Export Citation Format

Share Document