On the stability of hydromagnetic flow

1986 ◽  
Vol 35 (1) ◽  
pp. 145-150
Author(s):  
R. J. Lucas

The linear stability of steady flow of an inhomogeneous, incompressible hydromagnetic fluid is considered. Circle theorems which provide bounds on the complex eigenfrequencies of the unstable normal modes are obtained. Sufficient conditions for stability follow in a number of special cases.

1983 ◽  
Vol 29 (2) ◽  
pp. 275-286 ◽  
Author(s):  
K. R. Symon

Several conclusions regarding the stability of inhomogeneous Vlasov equilibria are drawn from earlier work. A technique is presented for generating first-order formulae for the change δω in the frequency of any normal mode, when a parameter λ characterizing the equilibrium is changed slightly. Several applications are given, including a first-order calculation of the growth rate or damping of an electromagnetic mode due to the presence of plasma. A condition is derived for the existence of a normal mode with real frequency. When there are ignorable co-ordinates, the normal modes can be written in the form of waves propagating in the ignorable directions. The character of the modes depends on certain symmetries in the dynamic spectral matrix. Special cases arise when the orbits can be approximated in certain ways.


Author(s):  
Alan Elcrat ◽  
Bartosz Protas

In this investigation, we revisit the question of linear stability analysis of two-dimensional steady Euler flows characterized by the presence of compact regions with constant vorticity embedded in a potential flow. We give a complete derivation of the linearized perturbation equation which, recognizing that the underlying equilibrium problem is of a free-boundary type, is carried out systematically using methods of shape-differential calculus. Particular attention is given to the proper linearization of contour integrals describing vortex induction. The thus obtained perturbation equation is validated by analytically deducing from it stability analyses of the circular vortex, originally due to Kelvin, and of the elliptic vortex, originally due to Love, as special cases. We also propose and validate a spectrally accurate numerical approach to the solution of the stability problem for vortices of general shape in which all singular integrals are evaluated analytically.


1978 ◽  
Vol 89 (3) ◽  
pp. 401-411 ◽  
Author(s):  
Knut S. Eckhoff ◽  
Leiv Storesletten

A necessary condition for linear stability of steady inviscid helical gas flows is found by the generalized progressing-wave expansion method. The criterion obtained is compared with the known Richardson number criteria giving sufficient conditions for stability.


Considered herein are the stability and instability properties of solitary-wave solutions of a general class of equations that arise as mathematical models for the unidirectional propagation of weakly nonlinear, dispersive long waves. Special cases for which our analysis is decisive include equations of the Korteweg-de Vries and Benjamin-Ono type. Necessary and sufficient conditions are formulated in terms of the linearized dispersion relation and the nonlinearity for the solitary waves to be stable.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 705-713
Author(s):  
Vanja Vukoslavcevic

This paper investigates two classes of three-layer difference schemes with weights in the form ?y?t,n+??2y?tt,n+?1Ayn-1+(E-?1-?2)Ayn+?2Ayn+1 = ?n and ?y?t,n+??2y?tt,n+A(?1yn-1+(E-?1-?2)yn+?2yn+1) = ?n. It obtains some sufficient conditions for the stability in a defined norm and, also, in special cases we achieve conditions for stability which do not depend on the choice of norm.


1997 ◽  
Vol 333 ◽  
pp. 197-230 ◽  
Author(s):  
N. J. BALMFORTH ◽  
D. DEL-CASTILLO-NEGRETE ◽  
W. R. YOUNG

Matched asymptotic expansions are used to obtain a reduced description of the nonlinear and viscous evolution of small, localized vorticity defects embedded in a Couette flow. This vorticity defect approximation is similar to the Vlasov equation, and to other reduced descriptions used to study forced Rossby wave critical layers and their secondary instabilities. The linear stability theory of the vorticity defect approximation is developed in a concise and complete form. The dispersion relations for the normal modes of both inviscid and viscous defects are obtained explicitly. The Nyquist method is used to obtain necessary and sufficient conditions for instability, and to understand qualitatively how changes in the basic state alter the stability properties. The linear initial value problem is solved explicitly with Laplace transforms; the resulting solutions exhibit the transient growth and eventual decay of the streamfunction associated with the continuous spectrum. The expansion scheme can be generalized to handle vorticity defects in non-Couette, but monotonic, velocity profiles.


2008 ◽  
Vol 65 (6) ◽  
pp. 1927-1940 ◽  
Author(s):  
Mark D. Fruman ◽  
Theodore G. Shepherd

Abstract Sufficient conditions are derived for the linear stability with respect to zonally symmetric perturbations of a steady zonal solution to the nonhydrostatic compressible Euler equations on an equatorial β plane, including a leading order representation of the Coriolis force terms due to the poleward component of the planetary rotation vector. A version of the energy–Casimir method of stability proof is applied: an invariant functional of the Euler equations linearized about the equilibrium zonal flow is found, and positive definiteness of the functional is shown to imply linear stability of the equilibrium. It is shown that an equilibrium is stable if the potential vorticity has the same sign as latitude and the Rayleigh centrifugal stability condition that absolute angular momentum increase toward the equator on surfaces of constant pressure is satisfied. The result generalizes earlier results for hydrostatic and incompressible systems and for systems that do not account for the nontraditional Coriolis force terms. The stability of particular equilibrium zonal velocity, entropy, and density fields is assessed. A notable case in which the effect of the nontraditional Coriolis force is decisive is the instability of an angular momentum profile that decreases away from the equator but is flatter than quadratic in latitude, despite its satisfying both the centrifugal and convective stability conditions.


2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


Sign in / Sign up

Export Citation Format

Share Document