Dynamics of vorticity defects in shear

1997 ◽  
Vol 333 ◽  
pp. 197-230 ◽  
Author(s):  
N. J. BALMFORTH ◽  
D. DEL-CASTILLO-NEGRETE ◽  
W. R. YOUNG

Matched asymptotic expansions are used to obtain a reduced description of the nonlinear and viscous evolution of small, localized vorticity defects embedded in a Couette flow. This vorticity defect approximation is similar to the Vlasov equation, and to other reduced descriptions used to study forced Rossby wave critical layers and their secondary instabilities. The linear stability theory of the vorticity defect approximation is developed in a concise and complete form. The dispersion relations for the normal modes of both inviscid and viscous defects are obtained explicitly. The Nyquist method is used to obtain necessary and sufficient conditions for instability, and to understand qualitatively how changes in the basic state alter the stability properties. The linear initial value problem is solved explicitly with Laplace transforms; the resulting solutions exhibit the transient growth and eventual decay of the streamfunction associated with the continuous spectrum. The expansion scheme can be generalized to handle vorticity defects in non-Couette, but monotonic, velocity profiles.

2009 ◽  
Vol 16 (4) ◽  
pp. 597-616
Author(s):  
Shota Akhalaia ◽  
Malkhaz Ashordia ◽  
Nestan Kekelia

Abstract Necessary and sufficient conditions are established for the stability in the Lyapunov sense of solutions of a linear system of generalized ordinary differential equations 𝑑𝑥(𝑡) = 𝑑𝐴(𝑡) · 𝑥(𝑡) + 𝑑𝑓(𝑡), where and are, respectively, matrix- and vector-functions with bounded total variation components on every closed interval from . The results are realized for the linear systems of impulsive, ordinary differential and difference equations.


2021 ◽  
Vol 31 (02) ◽  
pp. 2150018
Author(s):  
Wentao Huang ◽  
Chengcheng Cao ◽  
Dongping He

In this article, the complex dynamic behavior of a nonlinear aeroelastic airfoil model with cubic nonlinear pitching stiffness is investigated by applying a theoretical method and numerical simulation method. First, through calculating the Jacobian of the nonlinear system at equilibrium, we obtain necessary and sufficient conditions when this system has two classes of degenerated equilibria. They are described as: (1) one pair of purely imaginary roots and one pair of conjugate complex roots with negative real parts; (2) two pairs of purely imaginary roots under nonresonant conditions. Then, with the aid of center manifold and normal form theories, we not only derive the stability conditions of the initial and nonzero equilibria, but also get the explicit expressions of the critical bifurcation lines resulting in static bifurcation and Hopf bifurcation. Specifically, quasi-periodic motions on 2D and 3D tori are found in the neighborhoods of the initial and nonzero equilibria under certain parameter conditions. Finally, the numerical simulations performed by the fourth-order Runge–Kutta method provide a good agreement with the results of theoretical analysis.


1994 ◽  
Vol 116 (3) ◽  
pp. 419-428 ◽  
Author(s):  
J. E. Colgate

This paper presents both theoretical and experimental studies of the stability of dynamic interaction between a feedback controlled manipulator and a passive environment. Necessary and sufficient conditions for “coupled stability”—the stability of a linear, time-invariant n-port (e.g., a robot, linearized about an operating point) coupled to a passive, but otherwise arbitrary, environment—are presented. The problem of assessing coupled stability for a physical system (continuous time) with a discrete time controller is then addressed. It is demonstrated that such a system may exhibit the coupled stability property; however, analytical, or even inexpensive numerical conditions are difficult to obtain. Therefore, an approximate condition, based on easily computed multivariable Nyquist plots, is developed. This condition is used to analyze two controllers implemented on a two-link, direct drive robot. An impedance controller demonstrates that a feedback controlled manipulator may satisfy the coupled stability property. A LQG/LTR controller illustrates specific consequences of failure to meet the coupled stability criterion; it also illustrates how coupled instability may arise in the absence of force feedback. Two experimental procedures—measurement of endpoint admittance and interaction with springs and masses—are introduced and used to evaluate the above controllers. Theoretical and experimental results are compared.


1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.


2008 ◽  
Vol 21 (3) ◽  
pp. 309-325 ◽  
Author(s):  
Yury Farkov

This paper gives a review of multiresolution analysis and compactly sup- ported orthogonal wavelets on Vilenkin groups. The Strang-Fix condition, the partition of unity property, the linear independence, the stability, and the orthonormality of 'integer shifts' of the corresponding refinable functions are considered. Necessary and sufficient conditions are given for refinable functions to generate a multiresolution analysis in the L2-spaces on Vilenkin groups. Several examples are provided to illustrate these results. .


2021 ◽  
Vol 5 (2) ◽  
pp. 442-446
Author(s):  
Muhammad Abdullahi ◽  
Hamisu Musa

This paper studied an enhanced 3-point fully implicit super class of block backward differentiation formula for solving stiff initial value problems developed by Abdullahi & Musa and go further to established the necessary and sufficient conditions for the convergence of the method. The method is zero stable, A-stable and it is of order 5. The method is found to be suitable for solving first order stiff initial value problems


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


1999 ◽  
Vol 09 (02) ◽  
pp. 95-98 ◽  
Author(s):  
ANKE MEYER-BÄSE

This paper is concerned with the asymptotic hyperstability of recurrent neural networks. We derive based on the stability results necessary and sufficient conditions for the network parameters. The results we achieve are more general than those based on Lyapunov methods, since they provide milder constraints on the connection weights than the conventional results and do not suppose symmetry of the weights.


Sign in / Sign up

Export Citation Format

Share Document