scholarly journals An introductory guide to fluid models with anisotropic temperatures. Part 2. Kinetic theory, Padé approximants and Landau fluid closures

2019 ◽  
Vol 85 (6) ◽  
Author(s):  
P. Hunana ◽  
A. Tenerani ◽  
G. P. Zank ◽  
M. L. Goldstein ◽  
G. M. Webb ◽  
...  

In Part 2 of our guide to collisionless fluid models, we concentrate on Landau fluid closures. These closures were pioneered by Hammett and Perkins and allow for the rigorous incorporation of collisionless Landau damping into a fluid framework. It is Landau damping that sharply separates traditional fluid models and collisionless kinetic theory, and is the main reason why the usual fluid models do not converge to the kinetic description, even in the long-wavelength low-frequency limit. We start with a brief introduction to kinetic theory, where we discuss in detail the plasma dispersion function $Z(\unicode[STIX]{x1D701})$ , and the associated plasma response function $R(\unicode[STIX]{x1D701})=1+\unicode[STIX]{x1D701}Z(\unicode[STIX]{x1D701})=-Z^{\prime }(\unicode[STIX]{x1D701})/2$ . We then consider a one-dimensional (1-D) (electrostatic) geometry and make a significant effort to map all possible Landau fluid closures that can be constructed at the fourth-order moment level. These closures for parallel moments have general validity from the largest astrophysical scales down to the Debye length, and we verify their validity by considering examples of the (proton and electron) Landau damping of the ion-acoustic mode, and the electron Landau damping of the Langmuir mode. We proceed by considering 1-D closures at higher-order moments than the fourth order, and as was concluded in Part 1, this is not possible without Landau fluid closures. We show that it is possible to reproduce linear Landau damping in the fluid framework to any desired precision, thus showing the convergence of the fluid and collisionless kinetic descriptions. We then consider a 3-D (electromagnetic) geometry in the gyrotropic (long-wavelength low-frequency) limit and map all closures that are available at the fourth-order moment level. In appendix A, we provide comprehensive tables with Padé approximants of $R(\unicode[STIX]{x1D701})$ up to the eighth-pole order, with many given in an analytic form.

1974 ◽  
Vol 52 (8) ◽  
pp. 731-742 ◽  
Author(s):  
Robert C. Brunet

We present detailed numerical evaluations of the partial wave projections of Feynman diagrams of second- and fourth-order in perturbation for the πN–πN scattering in the [Formula: see text] theory. Perturbative contributions to the S, P, and D waves of isospin 1/2 and 3/2 are given in tables of numerical values. Figures regrouping these results show surprising behavior for the ratios Re(4)/Re(2). These tables and figures allow easy calculations with models using low order perturbation terms such as Padé approximants.


1987 ◽  
Vol 37 (1) ◽  
pp. 29-43
Author(s):  
A. B. Mikhailovskii ◽  
O. G. Onishchenko

The generalization of the kinetic theory of low-frequency long-wavelength drift instabilities (instabilities due to the number density and temperature gradients and an instability of the Kelvin–Helmholtz type) is given for the case of a relativistic plasma. The role of relativistic effects, taking into account the anisotropy of the particle momentum distribution function, is clarified. Particular attention is paid to the investigation of instabilities of these perturbations in a relativistic electron-positron plasma.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2002 ◽  
Vol 199 ◽  
pp. 474-483
Author(s):  
Namir E. Kassim ◽  
T. Joseph W. Lazio ◽  
William C. Erickson ◽  
Patrick C. Crane ◽  
R. A. Perley ◽  
...  

Decametric wavelength imaging has been largely neglected in the quest for higher angular resolution because ionospheric structure limited interferometric imaging to short (< 5 km) baselines. The long wavelength (LW, 2—20 m or 15—150 MHz) portion of the electromagnetic spectrum thus remains poorly explored. The NRL-NRAO 74 MHz Very Large Array has demonstrated that self-calibration techniques can remove ionospheric distortions over arbitrarily long baselines. This has inspired the Low Frequency Array (LOFAR)—-a fully electronic, broad-band (15—150 MHz)antenna array which will provide an improvement of 2—3 orders of magnitude in resolution and sensitivity over the state of the art.


Sign in / Sign up

Export Citation Format

Share Document