On an algebra of sets of finite sequences

1970 ◽  
Vol 35 (1) ◽  
pp. 19-28 ◽  
Author(s):  
J. Donald Monk

The algebras studied in this paper were suggested to the author by William Craig as a possible substitute for cylindric algebras. Both kinds of algebras may be considered as algebraic versions of first-order logic. Cylindric algebras can be introduced as follows. Let ℒ be a first-order language, and let be an ℒ-structure. We assume that ℒ has a simple infinite sequence ν0, ν1, … of individual variables, and we take as known what it means for a sequence ν0, ν1, … of individual variables, and we take as known what it means for a sequence x = 〈x0, x1, …〉 of elements of to satisfy a formula ϕ of ℒ in . Let ϕ be the collection of all sequences x which satisfy ϕ in . We can perform certain natural operations on the sets ϕ, of basic model-theoretic significance: Boolean operations = cylindrifications diagonal elements (0-ary operations) . In this way we make the class of all sets ϕ into an algebra; a natural abstraction gives the class of all cylindric set algebras (of dimension ω). Thus this method of constructing an algebraic counterpart of first-order logic is based upon the notion of satisfaction of a formula by an infinite sequence of elements. Since, however, a formula has only finitely many variables occurring in it, it may seem more natural to consider satisfaction by a finite sequence of elements; then ϕ becomes a collection of finite sequences of varying ranks (cf. Tarski [10]). In forming an algebra of sets of finite sequences it turns out to be possible to get by with only finitely many operations instead of the infinitely many ci's and dij's of cylindric algebras. Let be the class of all algebras of sets of finite sequences (an exact definition is given in §1).

1975 ◽  
Vol 40 (4) ◽  
pp. 567-575 ◽  
Author(s):  
Erik Ellentuck

Let L be a first order logic and the infinitary logic (as described in [K, p. 6] over L. Suslin logic is obtained from by adjoining new propositional operators and . Let f range over elements of ωω and n range over elements of ω. Seq is the set of all finite sequences of elements of ω. If θ: Seq → is a mapping into formulas of then and are formulas of LA. If is a structure in which we can interpret and h is an -assignment then we extend the notion of satisfaction from to by definingwhere f ∣ n is the finite sequence consisting of the first n values of f. We assume that has ω symbols for relations, functions, constants, and ω1 variables. θ is valid if θ ⊧ [h] for every h and is valid if -valid for every . We address ourselves to the problem of finding syntactical rules (or nearly so) which characterize validity .


1985 ◽  
Vol 50 (4) ◽  
pp. 865-873
Author(s):  
H. Andréka ◽  
I. Németi

The theory of cylindric algebras (CA's) is the algebraic theory of first order logics. Several ideas about logic are easier to formulate in the frame of CA-theory. Such are e.g. some concepts of abstract model theory (cf. [1] and [10]–[12]) as well as ideas about relationships between several axiomatic theories of different similarity types (cf. [4] and [10]). In contrast with the relationship between Boolean algebras and classical propositional logic, CA's correspond not only to classical first order logic but also to several other ones. Hence CA-theoretic results contain more information than their counterparts in first order logic. For more about this see [1], [3], [5], [9], [10] and [12].Here we shall use the notation and concepts of the monographs Henkin-Monk-Tarski [7] and [8]. ω denotes the set of natural numbers. CAα denotes the class of all cylindric algebras of dimension α; by “a CAα” we shall understand an element of the class CAα. The class Dcα ⊆ CAα was defined in [7]. Note that Dcα = 0 for α ∈ ω. The classes Wsα, and Csα were defined in 1.1.1 of [8], p. 4. They are called the classes of all weak cylindric set algebras, regular cylindric set algebras and cylindric set algebras respectively. It is proved in [8] (I.7.13, I.1.9) that ⊆ CAα. (These inclusions are proper by 7.3.7, 1.4.3 and 1.5.3 of [8].)It was proved in 2.3.22 and 2.3.23 of [7] that every simple, finitely generated Dcα is generated by a single element. This is the algebraic counterpart of a property of first order logics (cf. 2.3.23 of [7]). The question arose: for which simple CAα's does “finitely generated” imply “generated by a single element” (see p. 291 and Problem 2.3 in [7]). In terms of abstract model theory this amounts to asking the question: For which logics does the property described in 2.3.23 of [7] hold? This property is roughly the following. In any maximal theory any finite set of concepts is definable in terms of a single concept. The connection with CA-theory is that maximal theories correspond to simple CA's (the elements of which are the concepts of the original logic) and definability corresponds to generation.


2021 ◽  
Author(s):  
KARTHIK GURUMURTHI

A symbolic logical framework (L) consisting of first order logic augmented with a causal calculus has been provided to formalize, axiomatize and integrate theories of design. L is used to represent designs in the Function-Behavior-Structure (FBS) ontology in a single, widely applicable language that enables the following: seamless integration of representations of function, behavior and structure; and generality in the formalization of theories of design. FRs, constraints, structure and behavior are represented as sentences in L. FRs are represented (as abstractions of behavior) in the form of existentially quantified sentences, the instantiation of whose individual variables yields the representation of behavior. This enables the logical implication of FRs by behavior, without recourse to apriori criteria for satisfaction of FRs by behavior. Functional decomposition is represented to enable lower level FRs to logically imply the satisfaction of higher level FRs. The theory of whether and how structure and behavior satisfy FRs and constraints is represented as a formal proof in L. Important general attributes of designs such as solution-neutrality of FRs, probability of satisfaction of requirements and constraints (calculated in a Bayesian framework using Monte Carlo simulation), extent and nature of coupling, etc. have been defined in terms of the representation of a design in L. The entropy of a design is defined in terms of the above attributes of a design, based on which a general theory of what constitutes a good design has been formalized to include the desirability of solution-neutrality of (especially higher level) FRs, high probability of satisfaction of requirements and constraints, wide specifications, low variability and bias, use of fewer attributes to specify the design, less coupling (especially circular coupling at higher levels of FRs), parametrization, standardization, etc..


1986 ◽  
Vol 51 (3) ◽  
pp. 755-769 ◽  
Author(s):  
T. G. Kucera

In this paper I show how to develop stability theory within the context of the topological logic first introduced by McKee [Mc 76], Garavaglia [G 78] and Ziegler [Z 76]. I then study some specific applications to topological modules; in particular I prove two quantifier élimination theorems, one a generalization of a result of Garavaglia.In the first section I present a summary of basic results on topological model theory, mostly taken from the book of Flum and Ziegler [FZ 80]. This is done primarily to fix notation, but I also introduce the notion of an Lt-elementary substructure. The important point with this concept, as with many others, appears to be to allow only individuals to appear as parameters, not open sets.In the second section I begin the study of stability theory for Lt. I first develop a translation of the topological language Lt into an ordinary first-order language L*. The first main theorem is (2.3), which shows that the translation is faithful to the model-theoretic content of Lt, and provides the necessary tools for studying Lt theories in the context of ordinary first-order logic. The translation allows me to consider individual stability theory for Lt: the stability-theoretic study of those types of Lt in which only individual variables occur freely and in which only individuals occur as parameters. I originally developed this stability theory entirely within Lt; the fact that the theorems and their proofs were virtually identical to those in ordinary first order logic suggested the reduction from Lt to L*.


2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Zoran Majkić

We considered an extension of the first-order logic (FOL) by Bealer's intensional abstraction operator. Contemporary use of the term “intension” derives from the traditional logical Frege-Russell doctrine that an idea (logic formula) has both an extension and an intension. Although there is divergence in formulation, it is accepted that the “extension” of an idea consists of the subjects to which the idea applies, and the “intension” consists of the attributes implied by the idea. From the Montague's point of view, the meaning of an idea can be considered as particular extensions in different possible worlds. In the case of standard FOL, we obtain a commutative homomorphic diagram, which is valid in each given possible world of an intensional FOL: from a free algebra of the FOL syntax, into its intensional algebra of concepts, and, successively, into an extensional relational algebra (different from Cylindric algebras). Then we show that this composition corresponds to the Tarski's interpretation of the standard extensional FOL in this possible world.


Author(s):  
Raymond M. Smullyan

As we remarked in the preface, although this volume is a sequel to our earlier volume G.I.T. (Gödel’s Incompleteness Theorems), it can be read independently by those readers familiar with at least one proof of Gödel’s first incompleteness theorem. In this chapter we give the notation, terminology and main results of G.I.T. that are needed for this volume. Readers familiar with G.I.T. can skip this chapter or perhaps glance through it briefly as a refresher. §0. Preliminaries. we assume the reader to be familiar with the basic notions of first-order logic—the logical connectives, quantifiers, terms, formulas, free and bound occurrences of variables, the notion of interpretations (or models), truth under an interpretation, logical validity (truth under all interpretations), provability (in some complete system of first-order logic with identity) and its equivalence to logical validity (Gödel’s completeness theorem). we let S be a system (theory) couched in the language of first-order logic with identity and with predicate and/or function symbols and with names for the natural numbers. A system S is usually presented by taking some standard axiomatization of first-order logic with identity and adding other axioms called the non-logical axioms of S.we associate with each natural number n an expression n̅ of S called the numeral designating n (or the name of n).we could, for example, take 0̅,1̅,2̅, . . . ,to be the expressions 0,0', 0",..., as we did in G.I.T. we have our individual variables arranged in some fixed infinite sequence v1, v2,..., vn , . . . . By F(v1, ..., vn) we mean any formula whose free variables are all among v1,... ,vn, and for any (natural) numbers k1,...,kn by F(к̅1 ,... к̅n), we mean the result of substituting the numerals к̅1 ,... к̅n, for all free occurrences of v1,... ,vn in F respectively.


2008 ◽  
Vol 73 (1) ◽  
pp. 65-89 ◽  
Author(s):  
Hajnal Andréka ◽  
István Németi ◽  
Tarek Sayed Ahmed

AbstractWe give a novel application of algebraic logic to first order logic. A new, flexible construction is presented for representable but not completely representable atomic relation and cylindric algebras of dimension n (for finite n > 2) with the additional property that they are one-generated and the set of all n by n atomic matrices forms a cylindric basis. We use this construction to show that the classical Henkin-Orey omitting types theorem fails for the finite variable fragments of first order logic as long as the number of variables available is > 2 and we have a binary relation symbol in our language. We also prove a stronger result to the effect that there is no finite upper bound for the extra variables needed in the witness formulas. This result further emphasizes the ongoing interplay between algebraic logic and first order logic.


1989 ◽  
Vol 54 (3) ◽  
pp. 951-974 ◽  
Author(s):  
Roger D. Maddux

AbstractThe set of equations which use only one variable and hold in all representable relation algebras cannot be derived from any finite set of equations true in all representable relation algebras. Similar results hold for cylindric algebras and for logic with finitely many variables. The main tools are a construction of nonrepresentable one-generated relation algebras, a method for obtaining cylindric algebras from relation algebras, and the use of relation algebras in defining algebraic semantics for first-order logic.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Sign in / Sign up

Export Citation Format

Share Document