scholarly journals On the venom of the lesser weeverfish, Trachinus vipera

Author(s):  
D. B. Carlisle

SUMMARYA method is described for obtaining the venom from the dorsal fin of the lesser weever without harming the fish. It is suggested that the amount of venom normally injected into the wound by the weever when it stings is O-5-O-2 mg dry weight of venom. Some 60% of the dry weight of the venom appears to consist of toxic muco-substances, which have a neurotoxic effect, but are without toxic effect on the blood. In extracts this fraction may be separated into two albumins and an amino polysaccharide, though in the native venom these are probably associated into a single complex mucosubstance. When injected subcutaneously this fraction of the venom produces no local pain. The venom also contains about 1-20 jug/mg (dry-weight basis) of 5-hydroxytryptamine which appears to be the origin of the pain of the sting, together with some undetermined histamine releaser (not an indole) of low molecular weight. It is suggested that the chief role of the 5-hydroxytryptamine in the venom is to produce pain around the area of the inflicted wound.

1985 ◽  
Vol 53 (01) ◽  
pp. 086-089 ◽  
Author(s):  
A R Hubbard ◽  
C A Jennings

SummaryThe neutralisation by protamine sulphate (PS) of heparan sulphate (HS), a low molecular weight heparin (LMWH), and a reference preparation of unfractionated heparin (UH), was studied by activated partial thromboplastin time (APTT) and anti-Xa clotting assays. UH was most easily neutralised in the APTT assay by PS (on a weight for weight basis), followed by LMWH and HS. The neutralisation of APTT activity by PS closely followed the loss of activity in the anti-Xa clotting assay, when plasma was used as the source of At III. When the anti-Xa clotting assay was carried out using purified At III in place of plasma, HS and LMWH were neutralised by much lower amounts of PS and resembled UH neutralisation more closely. Resistance of HS anti-Xa activity to PS neutralisation decreased with increasing plasma dilution. The presence of bovine albumin with purified At III concentrate increased the resistance of HS to PS neutralisation. It is concluded that PS binding to UH, HS and LMWH is probably related more to their degree of sulphation than molecular weight and that non-specific interactions between PS and plasma proteins inhibit the binding of PS to HS and LMWH.


1954 ◽  
Vol 37 (3) ◽  
pp. 381-399 ◽  
Author(s):  
Ruth Hubbard

The sedimentation behavior of aqueous solutions of digitonin and of cattle rhodopsin in digitonin has been examined in the ultracentrifuge. In confirmation of earlier work, digitonin was found to sediment as a micelle (D-1) with an s20 of about 6.35 Svedberg units, and containing at least 60 molecules. The rhodopsin solutions sediment as a stoichiometric complex of rhodopsin with digitonin (RD-1) with an s20 of about 9.77 Svedberg units. The s20 of the RD-1 micelle is constant between pH 6.3 and 9.6, and in the presence of excess digitonin. RD-1 travels as a single boundary also in the electrophoresis apparatus at pH 8.5, and on filter paper at pH 8.0. The molecular weight of the RD-1 micelle lies between 260,000 and 290,000. Of this, only about 40,000 gm. are due to rhodopsin; the rest is digitonin (180 to 200 moles). Comparison of the relative concentrations of RD-1 and retinene in solutions of rhodopsin-digitonin shows that RD-1 contains only one retinene equivalent. It can therefore contain only one molecule of rhodopsin with a molecular weight of about 40,000. Cattle rhodopsin therefore contains only one chromophore consisting of a single molecule of retinene. It is likely that frog rhodopsin has a similar molecular weight and also contains only one chromophore per molecule. The molar extinction coefficient of rhodopsin is therefore identical with the extinction coefficient per mole of retinene (40,600 cm.2 per mole) and the E(1 per cent, 1 cm., 500 mµ) has a value of about 10. Rhodopsin constitutes about 14 per cent of the dry weight, and 3.7 per cent of the wet weight of cattle outer limbs. This corresponds to about 4.2 x 106 molecules of rhodopsin per outer limb. The rhodopsin content of frog outer limbs is considerably higher: about 35 per cent of the dry weight, and 10 per cent of the wet weight, corresponding to about 2.1 x 109 molecules per outer limb. Thus the frog outer limb contains about five hundred times as much rhodopsin as the cattle outer limb. But the relative volumes of these structures are such that the ratio of concentrations is only about 2.5 to 1 on a weight basis. Rhodopsin accounts for at least one-fifth of the total protein of the cattle outer limb; for the frog, this value must be higher. The extinction (K500) along its axis is about 0.037 cm.2 for the cattle outer limb, and about 0.50 cm.2 for the frog outer limb.


1982 ◽  
Vol 243 (5) ◽  
pp. C212-C221 ◽  
Author(s):  
A. E. Pegg ◽  
P. P. McCann

Polyamines are ubiquitous organic cations of low molecular weight. The content of these amines is closely regulated by the cell according to the state of growth. The reactions responsible for the biosynthesis and interconversion of the polyamines and their precursor putrescine are described and the means by which polyamine content can be varied in response to exogenous stimuli are discussed. The role of polyamines in the cell cycle, cell division, tissue growth, and differentiation is considered. Recent studies using highly specific inhibitors of polyamine biosynthesis such as alpha-difluoromethylornithine to prevent accumulation of polyamines have indicated that the synthesis of polyamines is intimately associated with these processes. Such inhibitors have great potential for investigation of the cellular role of polyamines.


Sign in / Sign up

Export Citation Format

Share Document