sedimentation behavior
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 16)

H-INDEX

25
(FIVE YEARS 2)

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1695
Author(s):  
Xinyue Zhou ◽  
Wenjun Wang ◽  
Xiaobin Ma ◽  
Enbo Xu ◽  
Donghong Liu

In order to remove the flocculent precipitation in Huyou juice after frozen storage and thawing process, the thawed juice was ultrasonically treated with different power (45–360 W) and time (10–60 min) in ice bath (~0 °C), and its sedimentation behavior during storage was observed. After optimization, the cloud stability of juice could be improved by ultrasonic treatment with ultrasonic power of 360 W or more for at least 30 min, which could be stable during 7 days of storage at 4 °C. Under this optimal condition (360 W, 30 min), the effects of ultrasound on the physicochemical properties and bioactive compounds of thawed Huyou juice during storage were investigated. The results showed that with smaller particle size and lower polymer dispersity index, ultrasonic treatment did not significantly change the color, soluble solids, titratable acidity, and bioactive compounds including flavonoids and other phenolics. In addition, all properties of samples were at the same level during storage. Thus, ultrasound was applicable since it can improve the cloud stability of Huyou juice with minimal impact on its physicochemical properties and nutritional quality compared to the untreated one.


2021 ◽  
Author(s):  
Hassan Elagami ◽  
Pouyan Ahmadi ◽  
Sven Frei ◽  
Martin Obst ◽  
Benjamin Gilfedder

<p>Plastics are among the most widespread contaminants on Earth. They build up in fresh water bodies with high concentrations and migrate between different environmental compartments. In thermally stratified lakes, in summer, MPs pollutants can migrate between epilimnion, metalimnion and hypolimnion. This increases the probability of that microplastic will be filtered by filter feeders allowing MPs to migrate through different trophic levels. In this study, the transport of MPs in lake systems is presented through laboratory experiments as well as numerical modelling. The settling velocities of various biodegradable and non-biodegradable particles with various shapes and sizes were measured in the settling column under laminar conditions using particle image velocimetry (PIV). The particles used ranged between 150 to 2400 µm in diameter. The experimental results presented that shape, size and density of a particle are the key parameters controlling the sedimentation behavior of the particles. The measured settling velocities ranged between 0.4 to 50 mms<sup>-1</sup>. In parallel, the transport of the particles used in the laboratory experiments was simulated using CFD. The laboratory experiments and CFD have shown consistent results. Subsequently, the same MPs used in the first lab experiments were incubated in a pond at the University of Bayreuth for 6, 8 and 10 weeks. The formation of biofilm on the incubated particles was investigated using confocal laser scanning microscopy. Also, the effect of biofouling of microplastics on the physical properties and thus settling velocity was investigated experimentally. It was observed that biofilm-building organisms has only colonized few regions on the surface of MPs and the whole surface was not coated with biofilm as it was anticipated. In addition, no changes in shape, size and density of the incubated were detected. After 6, 8 and 10 weeks of incubation, no significant change in the settling velocity of the incubated particles was observed. The detected changes in the settling velocity ranged between ± 5 % which was considered as a measurement error. Finally, the residence time in suspension and the distribution of MPs throughout a virtual lake water column was simulated using a simplified model. The effect of turbulences and the temperature gradient on the settling velocity were considered during the simulations. The model presented that turbulences, water temperature and layer depth control the settling velocity and thus the residence time of the MPs.</p>


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5018
Author(s):  
Md Abdur Rob Sheikh ◽  
Xiaoxing Liu ◽  
Tatsuya Matsumoto ◽  
Koji Morita ◽  
Liancheng Guo ◽  
...  

In the safety analysis of sodium-cooled fast reactors, numerical simulations of various thermal-hydraulic phenomena with multicomponent and multiphase flows in core disruptive accidents (CDAs) are regarded as particularly difficult. In the material relocation phase of CDAs, core debris settle down on a core support structure and/or an in-vessel retention device and form a debris bed. The bed’s shape is crucial for the subsequent relocation of the molten core and heat removal capability as well as re-criticality. In this study, a hybrid numerical simulation method, coupling the multi-fluid model of the three-dimensional fast reactor safety analysis code SIMMER-IV with the discrete element method (DEM), was applied to analyze the sedimentation and bed formation behaviors of core debris. Three-dimensional simulations were performed and compared with results obtained in a series of particle sedimentation experiments. The present simulation predicts the sedimentation behavior of mixed particles with different properties as well as homogeneous particles. The simulation results on bed shapes and particle distribution in the bed agree well with experimental measurements. They demonstrate the practicality of the present hybrid method to solid particle sedimentation and bed formation behaviors of mixed as well as homogeneous particles.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Falko Frenzel ◽  
Laura König-Mattern ◽  
Valerie Stock ◽  
Linn Voss ◽  
Maxi B. Paul ◽  
...  

Abstract Nanoparticles exhibit a specific diffusion and sedimentation behavior under cell culture conditions as used in nantoxicological in vitro testing. How a particular particle suspension behaves depends on the particular physicochemical characteristics of the particles and the cell culture system. Only a fraction of the nanoparticles applied to a cell culture will thus reach the cells within a given time frame. Therefore, dosimetric calculations are essential not only to determine the exact fraction of nanoparticles that has come into contact with the cells, but also to ensure experimental comparability and correct interpretation of results, respectively. Yet, the use of published dosimetry models is limited. Not the least because the correct application of these in silico tools usually requires bioinformatics knowledge, which often is perceived a hurdle. Moreover, not all models are freely available and accessible. In order to overcome this obstacle, we have now developed an easy-to-use interface for our recently published 3DSDD dosimetry model, called NanoPASS (NanoParticle Administration Sedimentation Simulator). The interface is freely available to all researchers. It will facilitate the use of in silico dosimetry in nanotoxicology and thus improve interpretation and comparability of in vitro results in the field.


2020 ◽  
Author(s):  
Shalmali Bapat ◽  
Doris Segets

The study of sedimentation behavior of nanoparticle dispersions is important for revealing particle size and colloidal stability characteristics. Quantitative appraisal of real-world colloidal systems in their native state, is key for replacing prevailing empiricism in formulation science by knowledge-based design. Herein, we choose fuel cell inks as one case-example amongst many other possibilities to present a new visualization technique, called <i>Transmittogram</i>. This technique readily depicts the time-resolved settling behavior of solid-liquid dispersions, measured by analytical centrifugation (AC). Although AC enables the causal examination of agglomeration, settling, and creaming behavior of dispersions, along with its consequent effect on structure formation and product properties, the understanding of the main transmission readout is often non-intuitive and complex. Transmittograms are, therefore, the missing link for straightforward data interpretation. First, we illustrate the utility of transmittogram analysis using model silica nanoparticle systems and further validate it against known characteristics of the system. Then, we demonstrate the application of transmittograms to characterize fuel cell inks, showing the strength of the approach in deconvoluting and distilling information to the reader. Finally, we discuss the potential of the technique for routine analysis using analytical centrifugation.<br>


2020 ◽  
Author(s):  
Shalmali Bapat ◽  
Doris Segets

The study of sedimentation behavior of nanoparticle dispersions is important for revealing particle size and colloidal stability characteristics. Quantitative appraisal of real-world colloidal systems in their native state, is key for replacing prevailing empiricism in formulation science by knowledge-based design. Herein, we choose fuel cell inks as one case-example amongst many other possibilities to present a new visualization technique, called <i>Transmittogram</i>. This technique readily depicts the time-resolved settling behavior of solid-liquid dispersions, measured by analytical centrifugation (AC). Although AC enables the causal examination of agglomeration, settling, and creaming behavior of dispersions, along with its consequent effect on structure formation and product properties, the understanding of the main transmission readout is often non-intuitive and complex. Transmittograms are, therefore, the missing link for straightforward data interpretation. First, we illustrate the utility of transmittogram analysis using model silica nanoparticle systems and further validate it against known characteristics of the system. Then, we demonstrate the application of transmittograms to characterize fuel cell inks, showing the strength of the approach in deconvoluting and distilling information to the reader. Finally, we discuss the potential of the technique for routine analysis using analytical centrifugation.<br>


2020 ◽  
Author(s):  
Shalmali Bapat ◽  
Doris Segets

The study of sedimentation behavior of nanoparticle dispersions is important for revealing particle size and colloidal stability characteristics. Quantitative appraisal of real-world colloidal systems in their native state, is key for replacing prevailing empiricism in formulation science by knowledge-based design. Herein, we choose fuel cell inks as one case-example amongst many other possibilities to present a new visualization technique, called <i>Transmittogram</i>. This technique readily depicts the time-resolved settling behavior of solid-liquid dispersions, measured by analytical centrifugation (AC). Although AC enables the causal examination of agglomeration, settling, and creaming behavior of dispersions, along with its consequent effect on structure formation and product properties, the understanding of the main transmission readout is often non-intuitive and complex. Transmittograms are, therefore, the missing link for straightforward data interpretation. First, we illustrate the utility of transmittogram analysis using model silica nanoparticle systems and further validate it against known characteristics of the system. Then, we demonstrate the application of transmittograms to characterize fuel cell inks, showing the strength of the approach in deconvoluting and distilling information to the reader. Finally, we discuss the potential of the technique for routine analysis using analytical centrifugation.<br>


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 412 ◽  
Author(s):  
Yajun Li ◽  
Yongxiang Zhang ◽  
Qi Jing ◽  
Yuhui Lin

Nano zero-valent iron (NZVI) is widely used for reducing chlorinated organic pollutants in water. However, the stability of the particles will affect the removal rate of the contaminant. In order to enhance the stability of nano zero-valent iron (NZVI), the particles were modified with F-127 as an environmentally friendly organic stabilizer. The study investigated the effect of the F-127 mass ratio on the colloidal stability of NZVI. Results show that the sedimentation behavior of F-NZVI varied at different mass ratios. A biphasic model was used to describe the two time-dependent settling processes (rapid sedimentation followed by slower settling), and the settling rates were calculated. The surface morphology of the synthesized F-NZVI was observed with a scanning electron microscope (SEM), and the functional groups of the samples were analyzed with Fourier Transform Infrared Spectroscopy (FTIR). Results show that the F-127 was successfully coated on the surface of the NZVI, and that significantly improved the stability of NZVI. Finally, in order to optimize the removal rate of 2,4-dichlorophenol (2,4-DCP) by F-NZVI, three variables were tested: the initial concentration 2,4-DCP, the pH, and the F-NZVI dosage. These were evaluated with a Box-Behnken Design (BBD) of response surface methodology (RSM). The experiments were designed by Design Expert software, and the regression model of fitting quadratic model was established. The following optimum removal conditions were determined: pH = 5, 3.5 g·L−1 F-NZVI for 22.5 mg·L−1 of 2,4-DCP.


Sign in / Sign up

Export Citation Format

Share Document