Seasonal biochemical composition of tissues from Cucumaria frondosa collected in the Bay of Fundy, Canada: feeding activity and reproduction

Author(s):  
V.M.M. David ◽  
B.A. MacDonald

This is the first study to examine the seasonal biochemical composition of tissues from male and female Cucumaria frondosa. Gonad and body wall tissues were analysed for their protein, lipid, and glycogen content. Lipids were the single most abundant component in gonad tissues, followed by proteins and glycogen, for both males and females. However, only protein and glycogen in the gonad tissues differed between feeding and non-feeding periods as well as between pre- and post-spawning periods. Proteins and lipids were both more abundant than glycogen in the body wall tissues. In this case, only protein and glycogen were found to differ between spawning states. All differences observed in the gonad tissues were attributed to the annual reproductive cycle, which produces a need for nutrient storage to allow the production of gametes throughout the year. The body wall was thought to be responsible for the build up of reserves during the feeding period in order to support maintenance and reproduction during non-feeding months.

1941 ◽  
Vol s2-82 (327) ◽  
pp. 467-540 ◽  
Author(s):  
F. SEGROVE

1. The larvae of Pomatoceros triqueter L. were obtained by artificial fertilization and reared through metamorphosis and for several months afterwards. Larval development took three weeks in summer, and about the same time in winter when the temperature was maintained at 65° F. 2. The eggs are small and give rise to typical trochosphere larvae with well-developed prototroch, metatroch, neurotroch, and feeding cilia, a spacious blastocoelic body-cavity and paired protonephridia. A head-vesicle and a conspicuous anal vesicle are also present. The right eye develops before the left. The larva is very active and grows rapidly at the expense of collected food material. 3. Three setigerous segments arise simultaneously; a fourth is added prior to metamorphosis. The lateral collar-folds develop in two capacious pockets which arise by invagination of the body-wall behind the metatroch, the ventral collar-fold by outgrowth of the ventral body-wall. The rudiments of the thoracic membrane appear above the lateral collar-folds. 4. Metamorphosis commences with the shrinkage of the locomotor apparatus, which leads to the exposure of the lateral collar-folds. The larva settles to the bottom and creeps about on its ventral surface by means of the neurotroch. The branchial crown arises as tripartite outgrowths on the sides of the head. The remaining tissues of the head, apart from the cerebral ganglion and eyes, are gradually resorbed. No tissue is thrown off. 5. The neurotroch gradually disappears and is replaced by cilia on the dorsal surface. The worm begins to secrete a calcareous tube. The resorption of the head is completed and the mouth assumes a terminal position surrounded by the branchial crown. 6. A fourth pair of filaments is added to the branchial crown. The dorsal pair of filaments develops into 'palps'. The third filament on the left side is modified as the operculum; the remaining filaments develop pinnules. 7. Further segments are added to the trunk. Those first added are of the thoracic type from the beginning. The eighth and succeeding setigers are of the abdominal type. The thoracic membrane gradually extends backwards to the posterior end of the thorax. 8. The thoracic nephridia arise as a single pair of cells which give rise to the dorsal unpaired duct by outgrowth. 9. The influence of the egg on the course of development is discussed. It is suggested: (a) that the small size of the egg is responsible for the active habits and protracted pelagic life of the larva; (b) that the mode of development of the collar is significant in that interference with the locomotor and feeding apparatus is thereby avoided; (c) that the general shrinkage which occurs at metamorphosis is related to a suspension of feeding activity in the period between the degeneration of the larval and the establishment of the adult feeding apparatus. 10. The development of Pomatoceros is compared with that of the Serpulid Psygmobranchus and the Sabeilid Branchiomma.


2011 ◽  
Vol 56 (1) ◽  
Author(s):  
Omar Amin ◽  
Richard Heckmann ◽  
Nguyen Ha

AbstractTwo rhadinorhynchid species of acanthocephalans, Rhadinorhynchus dorsoventrospinosus sp. nov. and Rhadinorhynchus laterospinosus sp. nov. are described from the redtail scad, Decapterus kurroides Bleeker, and the trigger fish Balistes sp., respectively. The hosts were collected off Cat Ba Island, Halong Bay, Gulf of Tonkin, Vietnam in May, 2009. This brings the total number of species of Rhadinorhynchus Lühe, 1911 to 38. Specimens of the first species are characterized by having 11–12 proboscis hook rows with 30–31 hooks each, large dorsal and ventral spines in the posterior field of trunk spines, large eggs (100 × 20), and subterminal gonopore in both males and females. It is further characterized by many prominent fragmented nuclei in the body wall. The 1 female of the second species has 18 proboscis hook rows with 24 hooks each, smaller eggs (62 × 17), lateral trunk spines connecting those in the anterior and the posterior fields, and subterminal female gonopore. Notes on the genus Rhadinorhynchus, lists of the invalid and valid species, and a key to species are provided. Raorhynchus Tripathi, 1959 is proposed to be a junior synonym of Rhadinorhynchus pending a revision of the species of Raorhynchus.


2019 ◽  
Vol 53 (4) ◽  
pp. 325-334
Author(s):  
V. N. Peskov ◽  
N. A. Petrenko ◽  
V. Yu. Reminnyi

Abstract We study size-at-age and sexual variability of morphometric characteristics of the marsh frog. According to the size of the body, males were divided into three size-age groups (juvenis, subadultus, adultus), females — into four groups (juvenis, subadultus, adultus, adultus-I). We found that the chronological age of frogs (skeletochronology) does not always correspond to their biological age (size and proportions of the body). We noted that the semi-adult males are reliably larger than females by mean values of 26 studied morphometric characters. Males and females of “adultus” group do not differ by linear body size, significant differences were found in body proportions (7 characters). For the females of “adultus-I” group, the mean values of 26 characters are significantly larger than for “adultus” males. The results of our study showed that with the age of the marsh frog, the level of exhibition, directionality and structure of morphometric sex differences changes.


1997 ◽  
Vol 17 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Philippe Moerman ◽  
Chris Van Geet ◽  
Hugo Devlieger
Keyword(s):  

Genetics ◽  
1994 ◽  
Vol 137 (2) ◽  
pp. 483-498
Author(s):  
J Ahnn ◽  
A Fire

Abstract We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.


1985 ◽  
Vol 260 (22) ◽  
pp. 12228-12233 ◽  
Author(s):  
H Takahashi ◽  
H Komano ◽  
N Kawaguchi ◽  
N Kitamura ◽  
S Nakanishi ◽  
...  

Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1611-1622 ◽  
Author(s):  
Go Shioi ◽  
Michinari Shoji ◽  
Masashi Nakamura ◽  
Takeshi Ishihara ◽  
Isao Katsura ◽  
...  

Abstract Using a pan-neuronal GFP marker, a morphological screen was performed to detect Caenorhabditis elegans larval lethal mutants with severely disorganized major nerve cords. We recovered and characterized 21 mutants that displayed displacement or detachment of the ventral nerve cord from the body wall (Ven: ventral cord abnormal). Six mutations defined three novel genetic loci: ven-1, ven-2, and ven-3. Fifteen mutations proved to be alleles of previously identified muscle attachment/positioning genes, mup-4, mua-1, mua-5, and mua-6. All the mutants also displayed muscle attachment/positioning defects characteristic of mua/mup mutants. The pan-neuronal GFP marker also revealed that mutants of other mua/mup loci, such as mup-1, mup-2, and mua-2, exhibited the Ven defect. The hypodermis, the excretory canal, and the gonad were morphologically abnormal in some of the mutants. The pleiotropic nature of the defects indicates that ven and mua/mup genes are required generally for the maintenance of attachment of tissues to the body wall in C. elegans.


Sign in / Sign up

Export Citation Format

Share Document