genetic loci
Recently Published Documents


TOTAL DOCUMENTS

1026
(FIVE YEARS 238)

H-INDEX

78
(FIVE YEARS 10)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 122
Author(s):  
Joan Fitzgerald ◽  
Laura Fahey ◽  
Laurena Holleran ◽  
Pilib Ó Broin ◽  
Gary Donohoe ◽  
...  

Cognitive resilience is the ability to withstand the negative effects of stress on cognitive functioning and is important for maintaining quality of life while aging. The UK Biobank does not have measurements of the same cognitive phenotype at distal time points. Therefore, we used education years (EY) as a proxy phenotype for past cognitive performance and current cognitive performance was based on processing speed. This represented an average time span of 40 years between past and current cognitive performance in 330,097 individuals. A confounding factor was that EY is highly polygenic and masked the genetics of resilience. To overcome this, we employed Genomics Structural Equation Modelling (GenomicSEM) to perform a genome-wide association study (GWAS)-by-subtraction using two GWAS, one GWAS of EY and resilience and a second GWAS of EY but not resilience, to generate a GWAS of Resilience. Using independent discovery and replication samples, we found 13 independent genetic loci for Resilience. Functional analyses showed enrichment in several brain regions and specific cell types. Gene-set analyses implicated the biological process “neuron differentiation”, the cellular component “synaptic part” and the “WNT signalosome”. Mendelian randomisation analysis showed a causative effect of white matter volume on cognitive resilience. These results may contribute to the neurobiological understanding of resilience.


2022 ◽  
Author(s):  
Bethan Clark ◽  
Joel Elkin ◽  
Aleksandra Marconi ◽  
George F Turner ◽  
Alan M Smith ◽  
...  

Identifying genetic loci underlying trait variation provides insights into the mechanisms of diversification, but demonstrating causality and characterising the role of genetic loci requires testing candidate gene function, often in non-model species. Here we establish CRISPR/Cas9 editing in Astatotilapia calliptera, a generalist cichlid of the remarkably diverse Lake Malawi radiation. By targeting the gene oca2 required for melanin synthesis in other vertebrate species, we show efficient editing and germline transmission. Gene edits include indels in the coding region, likely a result of non-homologous end joining, and a large deletion in the 3′ UTR due to homology-directed repair. We find that oca2 knock-out A. calliptera lack melanin, which may be useful for developmental imaging in embryos and studying colour pattern formation in adults. As A. calliptera resembles the presumed generalist ancestor of the Lake Malawi cichlids radiation, establishing genome editing in this species will facilitate investigating speciation, adaptation and trait diversification in this textbook radiation.


Author(s):  
Alexis C. Wood ◽  
Amit Arora ◽  
Michelle Newell ◽  
Victoria L. Bland ◽  
Jin Zhou ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Hsin-I Chang ◽  
Yu-Tzu Chang ◽  
Chi-Wei Huang ◽  
Kuo-Lun Huang ◽  
Jung-Lung Hsu ◽  
...  

The cognitive manifestations of Alzheimer’s disease (AD) are related to brain network degeneration, and genetic differences may mediate network degeneration. Several AD-susceptible loci have been reported to involve amyloid or tau cascades; however, their relationships with gray matter (GM) volume and cognitive outcomes have yet to be established. We hypothesized that single-nucleotide polymorphism genotype groups may interact with apolipoprotein E4 (ApoE4) status or independently exert an effect on cognitive outcomes. We also hypothesized that GM structural covariance networks (SCNs) may serve as an endophenotype of the genetic effect, which, in turn, may be related to neurobehavior test scores. Gray matter SCNs were constructed in 324 patients with AD using T1 magnetic resonance imaging with independent component analysis (ICA). We assessed the effects of 15 genetic loci (rs9349407, rs3865444, rs670139, rs744373, rs3851179, rs11136000, rs3764650, rs610932, rs6887649, rs7849530, rs4866650, rs3765728, rs34011, rs6656401, and rs597668) using additive, recessive, and dominant models on cognitive outcomes. Statistical analysis was performed to explore the independent role of each locus, interactions with ApoE4 status, and relationships to GM ICA network intensity score. For outcome measures, we used the Mini-Mental State Examination (MMSE), Cognitive Abilities Screening Instrument (CASI) total score, and short-term memory (STM) subscores, adjusted for the covariates of education, disease duration, and age. Clinically, the CD2AP G allele showed a protective role in MMSE, CASI total, and CASI-STM scores independently or via interactions with non-ApoE4 status, while the CR1 A genotype group was associated with lower STM subscores independent of ApoE4 status. Three loci showed synergic interactions with ApoE4: BIN 1, MS4A6A, and FTMT. Of the 15 meaningful ICA components, 5 SCNs (anterior and posterior hippocampus, right temporal, left thalamus, default mode network) showed relationships with general cognitive performance, in which only the ApoE4 and MS4A6A genotype groups were independently related to the hippocampus network. The genetic loci MS4A6A, BIN1, CLU, CR1, BIN1, PICALM, and FGF1 influenced the networks independently or in synergy. This study suggests that AD-susceptible loci may each exert clinical significance independently through interactions with ApoE4 status or through SCNs as an endophenotype and that this effect is associated with the cognitive outcomes.


2021 ◽  
Author(s):  
Alexis C. Wood ◽  
Amit Arora ◽  
Michelle Newell ◽  
Victoria L. Bland ◽  
Jin Zhou ◽  
...  

Background and Aims: Cardiometabolic disorders (CMD) arise from a constellation of features such as increased adiposity, hyperlipidemia, hypertension and compromised glucose control. Many genetic loci have shown associations with individual CMD-related traits, but no investigations have focused on simultaneously identifying loci showing associations across all domains. We therefore sought to identify loci associated with risk across seven continuous CMD-related traits. Methods and Results: We conducted separate genome-wide association studies (GWAS) for systolic and diastolic blood pressure (SBP/DBP), hemoglobin A1c (HbA1c), low- and high- density lipoprotein cholesterol (LDL-C/HDL-C), waist-to-hip-ratio (WHR), and triglycerides (TGs) in the UK Biobank (N= 356,574-456,823). Multiple loci reached genome-wide levels of significance (N=145-333) for each trait, but only four loci (in/near VEGFA, GRB14-COBLL1, KLF14, and RGS19-OPRL1) were associated with risk across all seven traits (P<5×10-8). We sought replication of these four loci in an independent set of seven trait-specific GWAS meta-analyses. GRB14-COBLL1 showed the most consistent replication, revealing nominally significant associations (p<0.05) with all traits except DBP. Conclusions: Our analyses suggest that very few loci are associated in the same direction of risk with traits representing the full spectrum of CMD features. We identified four such loci, and an understanding of the pathways between these loci and CMD risk may eventually identify factors that can be used to identify pathologic disturbances that represent broadly beneficial therapeutic targets.


2021 ◽  
Author(s):  
Jessica A. Regan ◽  
Jawan Abdulrahim ◽  
Nathan Bihlmeyer ◽  
Carol Haynes ◽  
Lydia Coulter Kwee ◽  
...  

AbstractBackgroundGenetic loci associated with risk of severe COVID-19 infection have been identified and individuals with complicated COVID-19 infections often have multiple comorbidities.ObjectiveIdentify known and unidentified comorbidities associated with genetic loci linked to risk of severe COVID-19 infection.MethodsA Phenome Wide Association Study (PheWAS) was conducted in 247,448 unrelated, white individuals from the UK Biobank to test the association of 1,402 unique phenotypes with ten genome-wide significant severe-COVID risk single nucleotide polymorphisms (SNP) identified from prior studies. A validation PheWAS was conducted in 2,247 white individuals from the CATHGEN.ResultsFour of the ten tested genetic loci showed significant phenotypic associations in UK Biobank after FDR adjustment. Vascular dementia significantly associated with rs7271165 near TMEM65 on 8q24.13 in individuals with the C risk allele (OR 5.66 [95% CI 2.21-11.85], q=0.049). We identified 40 novel phenotype associations with rs657152 on 9q34.2 coinciding with the ABO gene with individuals with the A COVID risk allele having higher odds of heart failure (OR 1.09 [95% CI 1.03-1.14], q=0.004), diabetes mellitus (OR 1.05 [95% CI 1.02-1.07], q=0.004) and hypercholesterolemia (OR 1.04 [95% CI 1.02-1.06], q=6.3×10−5). Eight phenotypes associated with rs1819040 near KANSL1 on 17q21.31 in individuals with the A risk allele including atrial fibrillation and flutter (OR 1.07 [95% CI 1.04-1.10], q=0.0084) and pulmonary fibrosis (OR 0.80 [95% CI 0.71-0.89], q=0.035). Ten novel phenotypic associations were identified in association with rs74956615 on 19p13.2 near the TYK2 gene including individuals with the A COVID risk allele having lower odds of psoriatic arthropathy (OR 0.31 [95% CI 0.20-0.47], q=4.5×10−5), rheumatoid arthritis (OR 0.83 [95% CI 0.64-0.83], p=1.4×10−6) and thyrotoxicosis with or without goiter (OR 0.77 [95% CI 0.68-0.87], p-6.9×10−5). Two associations for rs1819040 (KANSL1) and seven associations for rs74956615 (TYK2) validated in CATHGEN.ConclusionsUsing a broad PheWAS approach in a large discovery and validation cohort, we have identified novel phenotypic associations with risk alleles for severe COVID-19 infection. Interestingly, the ABO locus was associated with comorbidities that are also risk factors for severe COVID-19 infection, suggesting that this locus has pleiotropic effects and provides a potential mechanism for this association. The 19p13 locus was associated with lower risk of autoimmune disease, these findings may have broad implications for the importance of multiple comorbidities across both infectious and non-infectious diseases and may provide insight in the molecular function of the genes near these genetic risk loci.


2021 ◽  
Author(s):  
Richard J Allen ◽  
Beatriz Guillen-Guio ◽  
Emma Croot ◽  
Luke M Kraven ◽  
Samuel Moss ◽  
...  

AbstractGenome-wide association studies (GWAS) of coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) have identified genetic loci associated with both traits, suggesting possible shared biological mechanisms. Using updated GWAS of COVID-19 and IPF, we evaluated the genetic overlap between these two diseases and identified four genetic loci (including one novel) with likely shared causal variants between severe COVID-19 and IPF. Although there was a positive genetic correlation between COVID-19 and IPF, two of these four shared genetic loci had an opposite direction of effect. IPF-associated genetic variants related to telomere dysfunction and spindle assembly showed no association with COVID-19 phenotypes. Together, these results suggest there are both shared and distinct biological processes driving IPF and severe COVID-19 phenotypes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shao-Hua Hu ◽  
Hai-mei Li ◽  
Hao Yu ◽  
Yan Liu ◽  
Chen-Xing Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document