scholarly journals On Multiple Transitivity of Permutation Groups

1961 ◽  
Vol 18 ◽  
pp. 93-109 ◽  
Author(s):  
Tosiro Tsuzuku

It is well known that a doubly transitive group has an irreducible character χ1 such that χ1(R) = α(R) − 1 for any element R of and a quadruply transitive group has irreducible characters χ3 and χ3 such that χ2(R) = where α(R) and β(R) are respectively the numbers of one cycles and two cycles contained in R. G. Frobenius was led to this fact in the connection with characters of the symmetric groups and he proved the following interesting theorem: if a permutation group of degree n is t-ply transitive, then any irreducible character of the symmetric group of degree n with dimension at most equal to is an irreducible character of .

1966 ◽  
Vol 27 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Tosiro Tsuzuku

1. Let Ω be a finite set of arbitrary elements and let (G, Ω) be a permutation group on Ω. (This is also simply denoted by G). Two permutation groups (G, Ω) and (G, Γ) are called isomorphic if there exist an isomorphism σ of G onto H and a one to one mapping τ of Ω onto Γ such that (g(i))τ=gσ(iτ) for g ∊ G and i∊Ω. For a subset Δ of Ω, those elements of G which leave each point of Δ individually fixed form a subgroup GΔ of G which is called a stabilizer of Δ. A subset Γ of Ω is called an orbit of GΔ if Γ is a minimal set on which each element of G induces a permutation. A permutation group (G, Ω) is called a group of rank n if G is transitive on Ω and the number of orbits of a stabilizer Ga of a ∊ Ω, is n. A group of rank 2 is nothing but a doubly transitive group and there exist a few results on structure of groups of rank 3 (cf. H. Wielandt [6], D. G. Higman M).


2011 ◽  
Vol 2011 ◽  
pp. 1-13
Author(s):  
S. Aldhafeeri ◽  
R. T. Curtis

Let be a permutation group of degree viewed as a subgroup of the symmetric group . We show that if the irreducible character of corresponding to the partition of into subsets of sizes and 2, that is, to say the character often denoted by , remains irreducible when restricted to , then = 4, 5 or 9 and , A5, or PΣL2(8), respectively, or is 4-transitive.


1989 ◽  
Vol 40 (2) ◽  
pp. 255-279 ◽  
Author(s):  
L. G. Kovács

There is a familiar construction with two finite, transitive permutation groups as input and a finite, transitive permutation group, called their wreath product, as output. The corresponding ‘imprimitive wreath decomposition’ concept is the first subject of this paper. A formal definition is adopted and an overview obtained for all such decompositions of any given finite, transitive group. The result may be heuristically expressed as follows, exploiting the associative nature of the construction. Each finite transitive permutation group may be written, essentially uniquely, as the wreath product of a sequence of wreath-indecomposable groups, amid the two-factor wreath decompositions of the group are precisely those which one obtains by bracketing this many-factor decomposition.If both input groups are nontrivial, the output above is always imprimitive. A similar construction gives a primitive output, called the wreath product in product action, provided the first input group is primitive and not regular. The second subject of the paper is the ‘product action wreath decomposition’ concept dual to this. An analogue of the result stated above is established for primitive groups with nonabelian socle.Given a primitive subgroup G with non-regular socle in some symmetric group S, how many subgroups W of S which contain G and have the same socle, are wreath products in product action? The third part of the paper outlines an algorithm which reduces this count to questions about permutation groups whose degrees are very much smaller than that of G.


1998 ◽  
Vol 63 (1) ◽  
pp. 89-102 ◽  
Author(s):  
Stephen Bigelow

AbstractLet λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group Bλ(Ω), or simply Bλ, is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of Bλ if BλG is the full symmetric group on Ω.In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation groups. Specifically, they claimed to have proved that a group G acting on the set Ω is a supplement of Bλ if and only if there exists Δ ⊂ Ω with ∣Δ∣ < λ such that the setwise stabiliser G{Δ} acts as the full symmetric group on Ω ∖ Δ. However I have found a mistake in their proof. The aim of this paper is to examine conditions under which Macpherson and Neumann's claim holds, as well as conditions under which a counterexample can be constructed. In the process we will discover surprising links with cardinal arithmetic and Shelah's recently developed pcf theory.


1983 ◽  
Vol 35 (1) ◽  
pp. 59-67 ◽  
Author(s):  
David Gluck

For which permutation groups does there exist a subset of the permuted set whose stabilizer in the group is trivial?The permuted set has so many subsets that one might expect that subsets with trivial stabilizer usually exist. The symmetric and alternating groups are obvious exceptions to this expectation. Another, more interesting, infinite family of exceptions are the 2-Sylow subgroups of the symmetric groups on 2n symbols, in their natural representations on 2n points.One of our main results, Corollary 1, sheds some light on this last family of groups. We show that when the permutation group has odd order, there is indeed a subset of the permuted set whose stabilizer in the group is trivial. Corollary 1 follows easily from Theorem 1, which completely classifies the primitive solvable permutation groups in which every subset of the permuted set has non-trivial stabilizer.


10.37236/9753 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Timothy Y. Chow ◽  
Jennifer Paulhus

Suppose that $\chi_\lambda$ and $\chi_\mu$ are distinct irreducible characters of the symmetric group $S_n$. We give an algorithm that, in time polynomial in $n$, constructs $\pi\in S_n$ such that $\chi_\lambda(\pi)$ is provably different from $\chi_\mu(\pi)$. In fact, we show a little more. Suppose $f = \chi_\lambda$ for some irreducible character $\chi_\lambda$ of $S_n$, but we do not know $\lambda$, and we are given only oracle access to $f$. We give an algorithm that determines $\lambda$, using a number of queries to $f$ that is polynomial in $n$. Each query can be computed in time polynomial in $n$ by someone who knows $\lambda$.


1969 ◽  
Vol 21 ◽  
pp. 28-38 ◽  
Author(s):  
B. M. Puttaswamaiah

In this paper all representations are over the complex field K. The generalized symmetric group S(n, m) of order n!mn is isomorphic to the semi-direct product of the group of n × n diagonal matrices whose rath powers are the unit matrix by the group of all n × n permutation matrices over K. As a permutation group, S(n, m) consists of all permutations of the mn symbols {1, 2, …, mn} which commute withObviously, S (1, m) is a cyclic group of order m, while S(n, 1) is the symmetric group of order n!. If ci = (i, n+ i, …, (m – 1)n+ i) andthen {c1, c2, …, cn} generate a normal subgroup Q(n) of order mn and {s1, s2, …, sn…1} generate a subgroup S(n) isomorphic to S(n, 1).


1964 ◽  
Vol 4 (2) ◽  
pp. 174-178 ◽  
Author(s):  
W. J. Wong

A quasi-permutation group of degree n was defined in [3] to be a finite group with a faithful representation of degree n whose character has only non-negative rational integral values. If G is such a group, then the following simple properties of permutation groups of degree n were proved to hold also for G:(i) the order of G is a divisor of the order of the symmetric group Sn of degree n; and (ii) if G is a p-group and n < p2, then G has exponent at most p and derived length at most 1 (i.e. G is elementary Abelian).


2021 ◽  
pp. 1-40
Author(s):  
NICK GILL ◽  
BIANCA LODÀ ◽  
PABLO SPIGA

Abstract Let G be a permutation group on a set $\Omega $ of size t. We say that $\Lambda \subseteq \Omega $ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $\Lambda $ . We define the height of G to be the maximum size of an independent set, and we denote this quantity $\textrm{H}(G)$ . In this paper, we study $\textrm{H}(G)$ for the case when G is primitive. Our main result asserts that either $\textrm{H}(G)< 9\log t$ or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\textrm{I}(G)$ , the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either $\textrm{I}(G)<7\log t$ or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


Sign in / Sign up

Export Citation Format

Share Document