Supplements of bounded permutation groups

1998 ◽  
Vol 63 (1) ◽  
pp. 89-102 ◽  
Author(s):  
Stephen Bigelow

AbstractLet λ ≤ κ be infinite cardinals and let Ω be a set of cardinality κ. The bounded permutation group Bλ(Ω), or simply Bλ, is the group consisting of all permutations of Ω which move fewer than λ points in Ω. We say that a permutation group G acting on Ω is a supplement of Bλ if BλG is the full symmetric group on Ω.In [7], Macpherson and Neumann claimed to have classified all supplements of bounded permutation groups. Specifically, they claimed to have proved that a group G acting on the set Ω is a supplement of Bλ if and only if there exists Δ ⊂ Ω with ∣Δ∣ < λ such that the setwise stabiliser G{Δ} acts as the full symmetric group on Ω ∖ Δ. However I have found a mistake in their proof. The aim of this paper is to examine conditions under which Macpherson and Neumann's claim holds, as well as conditions under which a counterexample can be constructed. In the process we will discover surprising links with cardinal arithmetic and Shelah's recently developed pcf theory.

1964 ◽  
Vol 4 (2) ◽  
pp. 174-178 ◽  
Author(s):  
W. J. Wong

A quasi-permutation group of degree n was defined in [3] to be a finite group with a faithful representation of degree n whose character has only non-negative rational integral values. If G is such a group, then the following simple properties of permutation groups of degree n were proved to hold also for G:(i) the order of G is a divisor of the order of the symmetric group Sn of degree n; and (ii) if G is a p-group and n < p2, then G has exponent at most p and derived length at most 1 (i.e. G is elementary Abelian).


1961 ◽  
Vol 18 ◽  
pp. 93-109 ◽  
Author(s):  
Tosiro Tsuzuku

It is well known that a doubly transitive group has an irreducible character χ1 such that χ1(R) = α(R) − 1 for any element R of and a quadruply transitive group has irreducible characters χ3 and χ3 such that χ2(R) = where α(R) and β(R) are respectively the numbers of one cycles and two cycles contained in R. G. Frobenius was led to this fact in the connection with characters of the symmetric groups and he proved the following interesting theorem: if a permutation group of degree n is t-ply transitive, then any irreducible character of the symmetric group of degree n with dimension at most equal to is an irreducible character of .


2021 ◽  
pp. 1-40
Author(s):  
NICK GILL ◽  
BIANCA LODÀ ◽  
PABLO SPIGA

Abstract Let G be a permutation group on a set $\Omega $ of size t. We say that $\Lambda \subseteq \Omega $ is an independent set if its pointwise stabilizer is not equal to the pointwise stabilizer of any proper subset of $\Lambda $ . We define the height of G to be the maximum size of an independent set, and we denote this quantity $\textrm{H}(G)$ . In this paper, we study $\textrm{H}(G)$ for the case when G is primitive. Our main result asserts that either $\textrm{H}(G)< 9\log t$ or else G is in a particular well-studied family (the primitive large–base groups). An immediate corollary of this result is a characterization of primitive permutation groups with large relational complexity, the latter quantity being a statistic introduced by Cherlin in his study of the model theory of permutation groups. We also study $\textrm{I}(G)$ , the maximum length of an irredundant base of G, in which case we prove that if G is primitive, then either $\textrm{I}(G)<7\log t$ or else, again, G is in a particular family (which includes the primitive large–base groups as well as some others).


2002 ◽  
Vol 65 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Gil Kaplan ◽  
Arieh Lev

Let G be a transitive permutation group acting on a finite set of order n. We discuss certain types of transversals for a point stabiliser A in G: free transversals and global transversals. We give sufficient conditions for the existence of such transversals, and show the connection between these transversals and combinatorial problems of decomposing the complete directed graph into edge disjoint cycles. In particular, we classify all the inner-transitive Oberwolfach factorisations of the complete directed graph. We mention also a connection to Frobenius theorem.


2011 ◽  
Vol 2011 ◽  
pp. 1-13
Author(s):  
S. Aldhafeeri ◽  
R. T. Curtis

Let be a permutation group of degree viewed as a subgroup of the symmetric group . We show that if the irreducible character of corresponding to the partition of into subsets of sizes and 2, that is, to say the character often denoted by , remains irreducible when restricted to , then = 4, 5 or 9 and , A5, or PΣL2(8), respectively, or is 4-transitive.


10.37236/3262 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
Simon R. Blackburn

A rack of order $n$ is a binary operation $\vartriangleright$ on a set $X$ of cardinality $n$, such that right multiplication is an automorphism. More precisely, $(X,\vartriangleright)$ is a rack provided that the map $x\mapsto x\vartriangleright y$ is a bijection for all $y\in X$, and $(x\vartriangleright y)\vartriangleright z=(x\vartriangleright z)\vartriangleright (y\vartriangleright z)$ for all $x,y,z\in X$.The paper provides upper and lower bounds of the form $2^{cn^2}$ on the number of isomorphism classes of racks of order $n$. Similar results on the number of isomorphism classes of quandles and kei are obtained. The results of the paper are established by first showing how an arbitrary rack is related to its operator group (the permutation group on $X$ generated by the maps $x\mapsto x\vartriangleright y$ for $y\in Y$), and then applying some of the theory of permutation groups. The relationship between a rack and its operator group extends results of Joyce and of Ryder; this relationship might be of independent interest.


Author(s):  
Martin W. Liebeck

AbstractA permutation group G on a finite set Ω is always exposable if whenever G stabilises a switching class of graphs on Ω, G fixes a graph in the switching class. Here we consider the problem: given a finite group G, which permutation representations of G are always exposable? We present solutions to the problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations. (iii) generalised quaternion groups and (iv) some representations of the symmetric group Sn.


2019 ◽  
Vol 19 (12) ◽  
pp. 2150005
Author(s):  
Yong Yang

Let [Formula: see text] be a permutation group of degree [Formula: see text] and let [Formula: see text] denote the number of set-orbits of [Formula: see text]. We determine [Formula: see text] over all groups [Formula: see text] that satisfy certain restrictions on composition factors.


2012 ◽  
Vol 92 (1) ◽  
pp. 127-136 ◽  
Author(s):  
CHERYL E. PRAEGER ◽  
CSABA SCHNEIDER

AbstractWe consider the wreath product of two permutation groups G≤Sym Γ and H≤Sym Δ as a permutation group acting on the set Π of functions from Δ to Γ. Such groups play an important role in the O’Nan–Scott theory of permutation groups and they also arise as automorphism groups of graph products and codes. Let X be a subgroup of Sym Γ≀Sym Δ. Our main result is that, in a suitable conjugate of X, the subgroup of SymΓ induced by a stabiliser of a coordinate δ∈Δ only depends on the orbit of δ under the induced action of X on Δ. Hence, if X is transitive on Δ, then X can be embedded into the wreath product of the permutation group induced by the stabiliser Xδ on Γ and the permutation group induced by X on Δ. We use this result to describe the case where X is intransitive on Δ and offer an application to error-correcting codes in Hamming graphs.


2001 ◽  
Vol 71 (2) ◽  
pp. 243-258 ◽  
Author(s):  
Cheryl E. Praeger ◽  
Aner Shalev

AbstractA permutation group is said to be quasiprimitive if every nontrivial normal subgroup is transitive. Every primitive permutation group is quasiprimitive, but the converse is not true. In this paper we start a project whose goal is to check which of the classical results on finite primitive permutation groups also holds for quasiprimitive ones (possibly with some modifications). The main topics addressed here are bounds on order, minimum degree and base size, as well as groups containing special p-elements. We also pose some problems for further research.


Sign in / Sign up

Export Citation Format

Share Document