scholarly journals Injective Modules Over Prufer Rings

1959 ◽  
Vol 15 ◽  
pp. 57-69 ◽  
Author(s):  
Eben Matlis

The purpose of this paper is to find out what can be learned about valuation rings, and more generally Prufer rings, from a study of their injective modules. The concept of an almost maximal valuation ring can be reformulated as a valuation ring such that the images of its quotient field are injective. The integral domains with this latter property are found to be the Prufer rings with a (possibly) weakened form of linear precompactness for their quotient fields.

2019 ◽  
Vol 56 (2) ◽  
pp. 260-266
Author(s):  
Mohamed E. Charkani ◽  
Abdulaziz Deajim

Abstract Let R be a discrete valuation ring, its nonzero prime ideal, P ∈R[X] a monic irreducible polynomial, and K the quotient field of R. We give in this paper a lower bound for the -adic valuation of the index of P over R in terms of the degrees of the monic irreducible factors of the reduction of P modulo . By localization, the same result holds true over Dedekind rings. As an important immediate application, when the lower bound is greater than zero, we conclude that no root of P generates a power basis for the integral closure of R in the field extension of K defined by P.


2019 ◽  
Vol 18 (06) ◽  
pp. 1950104 ◽  
Author(s):  
Najib Ouled Azaiez ◽  
Moutu Abdou Salam Moutui

This paper examines the transfer of the almost valuation property to various constructions of ring extensions such as bi-amalgamations and pairs of rings. Namely, Sec. 2 studies the transfer of this property to bi-amalgamation rings. Our results cover previous known results on duplications and amalgamations, and provide the construction of various new and original examples satisfying this property. Section 3 investigates pairs of integral domains where all intermediate rings are almost valuation rings. As a consequence of our results, we provide necessary and sufficient conditions for a pair (R, T), where R arises from a (T, M, D) construction, to be an almost valuation pair. Furthermore, we study the class of maximal non-almost valuation subrings of their quotient field.


1972 ◽  
Vol 24 (6) ◽  
pp. 1170-1177 ◽  
Author(s):  
William Heinzer ◽  
Jack Ohm

Throughout this paper R and D will denote integral domains with the same quotient field K. A set of integral domains {Di} i∊I with quotient field K will be said to have FC (“finite character” or “finiteness condition“) if 0 ≠ ξ ∊ K implies ξ is a unit of Di for all but finitely many i. If ∩i∊IDi also has quotient field K, then {Di} has FC if and only if every non-zero element in ∩i∊IDi is a non-unit in at most finitely many Di. A non-empty set {Vi}i∊:I of rank one valuation rings with quotient field K will be called a defining family of real R-representativesfor D if {Vi} i∊:I has FC, R (⊄ ∩i∊IVi, and D = R∩ (∩i∊I Vi).


1952 ◽  
Vol 4 ◽  
pp. 29-33 ◽  
Author(s):  
Masayoshi Nagata

Previously W. Krull conjectured that every completely integrally closed primary domain of integrity is a valuation ring, The main purpose of the present paper is to construct in §1 a counter example against this conjecture. In § 2 we show a necessary and sufficient condition that a field is a quotient field of a suitable completely integrally closed primary domain of integrity which is not a valuation ring.


Author(s):  
Paolo Zanardo

AbstractLet ℜ be the class of commutative rings R with comparable regular elements, that is, given two non zero-divisors in R, one divides the other. Applying the notion of V-valuation due to Harrison and Vitulli, we define the class V-val of V-valuated rings, which is contained in ℜ and contains the class of Manis valuation rings. We prove that these inclusions of classes are both proper. We investigate Prüfer rings inside ℜ, showing that there exist Prüfer rings which lie in ℜ but not in V-val; we prove that a ring R is a Prüfer valuation ring if and only if it is Prüfer and V-valuated, if and only if its lattice of regular ideals is a chain. Finally, we introduce and investigate the ideal I∞ of a ring R ∈ ℜ, which corresponds to the counterimage of ∞, whenever R is V-valuated.


1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Le Quang Ham ◽  
Nguyen Van The ◽  
Phuc D. Tran ◽  
Le Anh Vinh

AbstractLet {\mathcal{R}} be a finite valuation ring of order {q^{r}}. In this paper, we prove that for any quadratic polynomial {f(x,y,z)\in\mathcal{R}[x,y,z]} that is of the form {axy+R(x)+S(y)+T(z)} for some one-variable polynomials {R,S,T}, we have|f(A,B,C)|\gg\min\biggl{\{}q^{r},\frac{|A||B||C|}{q^{2r-1}}\bigg{\}}for any {A,B,C\subset\mathcal{R}}. We also study the sum-product type problems over finite valuation ring {\mathcal{R}}. More precisely, we show that for any {A\subset\mathcal{R}} with {|A|\gg q^{r-\frac{1}{3}}} then {\max\{|AA|,|A^{d}+A^{d}|\}}, {\max\{|A+A|,|A^{2}+A^{2}|\}}, {\max\{|A-A|,|AA+AA|\}\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}}, and {|f(A)+A|\gg|A|^{\frac{2}{3}}q^{\frac{r}{3}}} for any one variable quadratic polynomial f.


2019 ◽  
Vol 236 ◽  
pp. 183-213
Author(s):  
SHANE KELLY

In order to work with non-Nagata rings which are Nagata “up-to-completely-decomposed-universal-homeomorphism,” specifically finite rank Hensel valuation rings, we introduce the notions of pseudo-integral closure, pseudo-normalization, and pseudo-Hensel valuation ring. We use this notion to give a shorter and more direct proof that $H_{\operatorname{cdh}}^{n}(X,F_{\operatorname{cdh}})=H_{l\operatorname{dh}}^{n}(X,F_{l\operatorname{dh}})$ for homotopy sheaves $F$ of modules over the $\mathbb{Z}_{(l)}$-linear motivic Eilenberg–Maclane spectrum. This comparison is an alternative to the first half of the author’s volume Astérisque 391 whose main theorem is a cdh-descent result for Voevodsky motives. The motivating new insight is really accepting that Voevodsky’s motivic cohomology (with $\mathbb{Z}[\frac{1}{p}]$-coefficients) is invariant not just for nilpotent thickenings, but for all universal homeomorphisms.


1966 ◽  
Vol 28 ◽  
pp. 85-111 ◽  
Author(s):  
Susan Williamson

Introduction. Let S be the integral closure of a complete discrete rank one valuation ring R in a finite Galois extension of the quotient field of R, and let G denote the Galois group of the quotient field extension. Auslander and Rim have shown in [3] that the trivial crossed product Δ (1, S, G) is an hereditary order if and only if 5 is a tamely ramified extension of R. And the author has proved in [7] that if the extension S of R is tamely ramified then the crossed product Δ(f, 5, G) is a Π-principal hereditary order for each 2-cocycle f in Z2(G, U(S)). (See Section 1 for the definition of Π-principal hereditary order.) However, the author has exhibited in [8] an example of a crossed product Δ(f, S, G) which is a Π-principal hereditary order in the case when S is a wildly ramified extension of R.


2005 ◽  
Vol 15 (05n06) ◽  
pp. 997-1012 ◽  
Author(s):  
V. V. KIRICHENKO ◽  
A. V. ZELENSKY ◽  
V. N. ZHURAVLEV

Exponent matrices appear in the theory of tiled orders over a discrete valuation ring. Many properties of such an order and its quiver are fully determined by its exponent matrix. We prove that an arbitrary strongly connected simply laced quiver with a loop in every vertex is realized as the quiver of a reduced exponent matrix. The relations between exponent matrices and finite posets, Markov chains, and doubly stochastic matrices are discussed.


Sign in / Sign up

Export Citation Format

Share Document