scholarly journals Local zeta functions and Newton polyhedra

2003 ◽  
Vol 172 ◽  
pp. 31-58 ◽  
Author(s):  
W. A. Zuniga-Galindo

AbstractTo a polynomial f over a non-archimedean local field K and a character χ of the group of units of the valuation ring of K one associates Igusa’s local zeta function Z (s, f, χ). In this paper, we study the local zeta function Z(s, f, χ) associated to a non-degenerate polynomial f, by using an approach based on the p-adic stationary phase formula and Néron p-desingularization. We give a small set of candidates for the poles of Z (s, f, χ) in terms of the Newton polyhedron Γ(f) of f. We also show that for almost all χ, the local zeta function Z(s, f, χ) is a polynomial in q−s whose degree is bounded by a constant independent of χ. Our second result is a description of the largest pole of Z(s, f, χtriv) in terms of Γ(f) when the distance between Γ(f) and the origin is at most one.

2017 ◽  
Vol 165 (3) ◽  
pp. 435-444 ◽  
Author(s):  
TOBIAS ROSSMANN

AbstractVarious types of local zeta functions studied in asymptotic group theory admit two natural operations: (1) change the prime and (2) perform local base extensions. Often, the effects of both of the preceding operations can be expressed simultaneously in terms of a single formula, a statement made precise using what we call local maps of Denef type. We show that assuming the existence of such formulae, the behaviour of local zeta functions under variation of the prime in a set of density 1 in fact completely determines these functions for almost all primes and, moreover, it also determines their behaviour under local base extensions. We discuss applications to topological zeta functions, functional equations, and questions of uniformity.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 100
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

The aim of the current document is to evaluate a quadruple integral involving the Chebyshev polynomial of the first kind Tn(x) and derive in terms of the Hurwitz-Lerch zeta function. Special cases are evaluated in terms of fundamental constants. The zero distribution of almost all Hurwitz-Lerch zeta functions is asymmetrical. All the results in this work are new.


Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 9
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

The objective of the present paper is to obtain a quadruple infinite integral. This integral involves the product of the Struve and parabolic cylinder functions and expresses it in terms of the Hurwitz–Lerch Zeta function. Almost all Hurwitz-Lerch Zeta functions have an asymmetrical zero distributionSpecial cases in terms fundamental constants and other special functions are produced. All the results in the work are new.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2369
Author(s):  
Robert Reynolds ◽  
Allan Stauffer

We examine the improved infinite sum of the incomplete gamma function for large values of the parameters involved. We also evaluate the infinite sum and equivalent Hurwitz-Lerch zeta function at special values and produce a table of results for easy reading. Almost all Hurwitz-Lerch zeta functions have an asymmetrical zero distribution.


1998 ◽  
Vol 18 (2) ◽  
pp. 471-486 ◽  
Author(s):  
T. B. WARD

We show that for almost every ergodic $S$-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than $\exp(-\frac{1}{2}h_{\rm top})<1$. In the arithmetic case almost every zeta function is irrational.We conjecture that for almost every ergodic $S$-integer dynamical system the radius of convergence of the zeta function is exactly $\exp(-h_{\rm top})<1$ and the zeta function is irrational.In an important geometric case (the $S$-integer systems corresponding to isometric extensions of the full $p$-shift or, more generally, linear algebraic cellular automata on the full $p$-shift) we show that the conjecture holds with the possible exception of at most two primes $p$.Finally, we explicitly describe the structure of $S$-integer dynamical systems as isometric extensions of (quasi-)hyperbolic dynamical systems.


2006 ◽  
Vol 80 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Cristian Virdol

AbstractIn this paper we compute and continue meromorphically to the whole complex plane the zeta function for twisted modular curves. The twist of the modular curve is done by a modprepresentation of the absolute Galois group.


2017 ◽  
Vol 304 ◽  
pp. 355-420 ◽  
Author(s):  
Raemeon A. Cowan ◽  
Daniel J. Katz ◽  
Lauren M. White

2018 ◽  
Vol 19 (3) ◽  
pp. 947-964
Author(s):  
Dori Bejleri ◽  
Dhruv Ranganathan ◽  
Ravi Vakil

The motivic Hilbert zeta function of a variety $X$ is the generating function for classes in the Grothendieck ring of varieties of Hilbert schemes of points on $X$. In this paper, the motivic Hilbert zeta function of a reduced curve is shown to be rational.


Sign in / Sign up

Export Citation Format

Share Document