scholarly journals Use of stable isotopes to study carbohydrate and fat metabolism at the whole-body level

1999 ◽  
Vol 58 (4) ◽  
pp. 953-961 ◽  
Author(s):  
Andrew R. Coggan

The present review discusses the advantages and limitations of using stable-isotope tracers to assess carbohydrate and fat metabolism at the whole-body level. One advantage of stable-(v. radioactive-) isotope tracers is the relative ease with which the location of a label within a molecule can be determined using selected-ion-monitoring GC-mass spectrometry (SIM-GC- MS). This technique minimizes potential problems due to label recycling, allows the use of multiple-labelled compounds simultaneously (e.g. to quantify glucose cycling), and perhaps most importantly, has led to the development of unique stable-isotope methods for, for example, quantifying gluconeogenesis. However, the limited sensitivity of SIM-GC-MS sometimes requires that relatively large amounts of a stable-isotope tracer be used, thus increasing cost and potentially altering metabolism. At least theoretically, stable- (or radioactive-) isotope tracers can also be used in conjunction with indirect calorimetry to estimate utilization of muscle glycogen or triacylglycerol stores, thus potentially circumventing the need to obtain muscle biopsies. These calculations, however, require certain critical assumptions, which if incorrect could lead to major errors in the values obtained. Despite such limitations, stable-isotope tracers provide a powerful and sometimes unique tool for investigating carbohydrate and fat metabolism at the whole-body level. With continuing advances in availability, instrumentation and methods, it is likely that stable-isotope tracers will become increasingly important in the immediate future.

2021 ◽  
Vol 12 ◽  
Author(s):  
Blossom H. Patterson ◽  
Gerald F. Combs ◽  
Philip R. Taylor ◽  
Kristine Y. Patterson ◽  
James E. Moler ◽  
...  

BackgroundSelenium (Se) is a nutritionally essential trace element and health may be improved by increased Se intake. Previous kinetic studies have shown differences in metabolism of organic vs. inorganic forms of Se [e.g., higher absorption of selenomethionine (SeMet) than selenite (Sel), and more recycling of Se from SeMet than Sel]. However, the effects on Se metabolism after prolonged Se supplementation are not known.ObjectiveTo determine how the metabolism and transport of Se changes in the whole-body in response to Se-supplementation by measuring Se kinetics before and after 2 years of Se supplementation with SeMet.MethodsWe compared Se kinetics in humans [n = 31, aged 40 ± 3 y (mean ± SEM)] studied twice after oral tracer administration; initially (PK1), then after supplementation for 2 y with 200 µg/d of Se as selenomethionine (SeMet) (PK2). On each occasion, we administered two stable isotope tracers of Se orally: SeMet, the predominant food form, and selenite (Na276SeO3, or Sel), an inorganic form. Plasma and RBC were sampled for 4 mo; urine and feces were collected for the initial 12 d of each period. Samples were analyzed for tracers and total Se by isotope dilution GC-MS. Data were analyzed using a compartmental model, we published previously, to estimate fractional transfer between pools and pool masses in PK2.ResultsWe report that fractional absorption of SeMet or Sel do not change with SeMet supplementation and the amount of Se absorbed increased. The amount of Se excreted in urine increases but does not account for all the Se absorbed. As a result, there is a net incorporation of SeMet into various body pools. Nine of the 11 plasma pools doubled in PK2; two did not change. Differences in metabolism were observed for SeMet and Sel; RBC uptake increased 247% for SeMet, urinary excretion increased from two plasma pools for Sel and from two different pools for SeMet, and recycling to liver/tissues increased from one plasma pool for Sel and from two others for SeMet. One plasma pool increased more in males than females in PK2.ConclusionsOf 11 Se pools identified kinetically in human plasma, two did not increase in size after SeMet supplementation. These pools may be regulated and important during low Se intake.


2018 ◽  
Author(s):  
Shazia Khan ◽  
Diego F Cobice ◽  
Dawn EW Livingstone ◽  
C Logan Mackay ◽  
Scott P Webster ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 100513
Author(s):  
Maryam Mosaffa ◽  
Sara Nazif ◽  
Youssef Khalaj Amirhosseini ◽  
Werner Balderer ◽  
Hadi Mahmoodi Meiman

Sign in / Sign up

Export Citation Format

Share Document