plasma pool
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 6)

H-INDEX

19
(FIVE YEARS 0)

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259731
Author(s):  
Sara Stinca ◽  
Thomas W. Barnes ◽  
Peter Vogel ◽  
Wilfried Meyers ◽  
Johannes Schulte-Pelkum ◽  
...  

Background Plasma-derived intravenous immunoglobulin (IVIg) products contain a dynamic spectrum of immunoglobulin (Ig) G reactivities reflective of the donor population from which they are derived. We sought to model the concentration of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgG which could be expected in future plasma pool and final-product batches of CSL Behring’s immunoglobulin product Privigen. Study design and methods Data was extracted from accessible databases, including the incidence of coronavirus disease 2019 and SARS-CoV-2 vaccination status, antibody titre in convalescent and vaccinated groups and antibody half-life. Together, these parameters were used to create an integrated mathematical model that could be used to predict anti-SARS-CoV-2 antibody levels in future IVIg preparations. Results We predict that anti-SARS-CoV-2 IgG concentration will peak in batches produced in mid-October 2021, containing levels in the vicinity of 190-fold that of the mean convalescent (unvaccinated) plasma concentration. An elevated concentration (approximately 35-fold convalescent plasma) is anticipated to be retained in batches produced well into 2022. Measurement of several Privigen batches using the Phadia™ EliA™ SARS-CoV-2-Sp1 IgG binding assay confirmed the early phase of this model. Conclusion The work presented in this paper may have important implications for physicians and patients who use Privigen for indicated diseases.


2021 ◽  
Author(s):  
José-María Díez ◽  
Carolina Romero ◽  
Rodrigo Gajardo

Introduction: In this series of studies, immunoglobulin products (IgG) formulated for different routes of administration (IV, IM, SC) and prepared from geographically diverse plasma pools were tested for activity against common human coronaviruses (HCoV). IgG products from plasma obtained from Germany, Czech Republic, Slovak Republic, USA and Spain were tested for antibodies to four common HCoV: 229E, OC43, NL63 and HKU1. Since these products are manufactured from pooled plasma from thousands of donors, the antibodies therein are a representation of the HCoV exposure of the population at large. Methods: IgG products of different concentrations manufactured from geographically diverse plasma pools were tested for antibodies to four common HCoV by ELISA. In addition, neutralization assays were conducted using HCoV-229E expressed in MRC5 cells. Complete concentration-neutralization curves were obtained to calculate potencies. Results: The ELISA assays showed that when expressed as specific activity (anti-HCoV activity/mg IgG) similar activity against the four common HCoV was seen across the IgG products regardless of concentration or geographic origin. Highest anti-HCoV activity was seen against HCoV-229E, followed by HCoV-OC43 and then HCoV-NL63 and HCoV-HKU1. The neutralization assays showed similar potency for two preparations of IgG prepared by different processes. Conclusions: These studies are the first demonstration of antibodies to common HCoV in IgG products. The level of activity was similar regardless of the geographic origin of the plasma pool. These antibodies demonstrated neutralization activity against HCoV-229E in MRC5 cells. These results may explain the cross-reactivity seen with pre-pandemic IgG products and SARS-CoV-2 and contribute to the variability in disease course in different patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Blossom H. Patterson ◽  
Gerald F. Combs ◽  
Philip R. Taylor ◽  
Kristine Y. Patterson ◽  
James E. Moler ◽  
...  

BackgroundSelenium (Se) is a nutritionally essential trace element and health may be improved by increased Se intake. Previous kinetic studies have shown differences in metabolism of organic vs. inorganic forms of Se [e.g., higher absorption of selenomethionine (SeMet) than selenite (Sel), and more recycling of Se from SeMet than Sel]. However, the effects on Se metabolism after prolonged Se supplementation are not known.ObjectiveTo determine how the metabolism and transport of Se changes in the whole-body in response to Se-supplementation by measuring Se kinetics before and after 2 years of Se supplementation with SeMet.MethodsWe compared Se kinetics in humans [n = 31, aged 40 ± 3 y (mean ± SEM)] studied twice after oral tracer administration; initially (PK1), then after supplementation for 2 y with 200 µg/d of Se as selenomethionine (SeMet) (PK2). On each occasion, we administered two stable isotope tracers of Se orally: SeMet, the predominant food form, and selenite (Na276SeO3, or Sel), an inorganic form. Plasma and RBC were sampled for 4 mo; urine and feces were collected for the initial 12 d of each period. Samples were analyzed for tracers and total Se by isotope dilution GC-MS. Data were analyzed using a compartmental model, we published previously, to estimate fractional transfer between pools and pool masses in PK2.ResultsWe report that fractional absorption of SeMet or Sel do not change with SeMet supplementation and the amount of Se absorbed increased. The amount of Se excreted in urine increases but does not account for all the Se absorbed. As a result, there is a net incorporation of SeMet into various body pools. Nine of the 11 plasma pools doubled in PK2; two did not change. Differences in metabolism were observed for SeMet and Sel; RBC uptake increased 247% for SeMet, urinary excretion increased from two plasma pools for Sel and from two different pools for SeMet, and recycling to liver/tissues increased from one plasma pool for Sel and from two others for SeMet. One plasma pool increased more in males than females in PK2.ConclusionsOf 11 Se pools identified kinetically in human plasma, two did not increase in size after SeMet supplementation. These pools may be regulated and important during low Se intake.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Marianne Kjalke ◽  
Søren Andersen

Introduction: Lack of factor VIII/IX (FVIII/FIX) in hemophilia A/B (HA/HB), respectively, results in reduced thrombin generation, leading to recurrent/spontaneous bleeds. Concizumab is an anti-tissue factor pathway inhibitor (TFPI) monoclonal antibody, currently under clinical investigation for subcutaneous prophylaxis of HA/HB patients with/without inhibitors. Breakthrough bleeds occurring in HA/HB patients while on concizumab prophylaxis may be treated with FVIII/FIX. We aimed to compare the in vitro effect of recombinant FVIII (rFVIII) and FIX (rFIX) in HA and HB plasma, respectively, in the absence or presence of concizumab. Methods: rFVIII/rFIX was added to HA/HB pooled plasma at 0.25, 0.5 or 1 IU/mL (corresponding to post-administration plasma concentrations of 12.5, 25 and 50 IU/kg rFVIII and 12.5−25, 25−50 and 50−100 IU/kg rFIX) in the absence or presence of concizumab (1,500, 4,500 or 15,000 ng/mL). In a separate experiment, 33 plasma samples from eight HA patients, who were on concizumab prophylaxis as part of the phase 2 explorer5 trial (NCT03196297), were spiked with 0.5, 1 and 1.5 IU/mL rFVIII. Pre-dose samples (before concizumab prophylaxis) from seven of these patients were also included. Thrombin generation was measured after initiation with 1 pM tissue factor (PPP-Low, Thrombinoscope). Statistical analysis of the effects conferred by each (combination of) drug(s) was performed by ANOVA analyses. Results: A significant (p<0.001) and concentration-dependent increase in thrombin peak was observed when HA plasma pool samples were spiked with rFVIII, both in the absence and presence of concizumab. Likewise, concizumab increased the thrombin peak both in the absence and in presence of rFVIII. Increasing concizumab from 1,500 to 4,500 and 15,000 ng/mL only slightly increased the thrombin peak further, demonstrating that a close-to-maximal effect on thrombin peak was achieved at 1,500 ng/mL concizumab. The effects of concizumab and rFVIII were mainly additive with an up to 20% additional effect caused by drug-drug interaction. The addition of rFVIII to explorer5 patient plasma samples resulted in a significant and concentration-dependent increase in thrombin peak. The effects observed for rFVIII and concizumab were exclusively additive. The thrombin peak obtained with 1.0 IU/mL rFVIII before concizumab administration was lower than with 0.5 IU/mL rFVIII in the presence of concizumab. This suggests that a 2-fold reduced rFVIII dose may be sufficient to achieve the same plasma thrombin generation capacity as with the standard rFVIII dose in the absence of concizumab. The addition of rFIX to a HB plasma pool increased the thrombin peak significantly (p<0.001) and in a concentration-dependent manner both in the absence and presence of concizumab (1,500 ng/mL). Likewise, concizumab increased the thrombin peak at all rFIX concentrations (p<0.001). Increasing concizumab from 1,500 to 4,500 and 15,000 ng/mL had no or limited further effect. The effects of concizumab and rFIX were mainly additive with an up to 10% effect conferred by negative drug-drug interaction for 1 IU/mL rFIX combined with concizumab >1,500 ng/mL and 0.5 IU/mL rFIX combined with 15,000 ng/mL concizumab, i.e., a 10% smaller effect of rFIX was observed in the presence of concizumab than in its absence. The thrombin peak obtained upon adding 1.0 IU/mL rFIX to plasma without concizumab was similar to the thrombin peak in the presence of concizumab and 0.5 IU/mL rFIX. This suggests that in the presence of concizumab, a 2-fold reduced dose of rFIX would be sufficient to obtain the same plasma thrombin generation capacity as with 1.0 IU/mL rFIX in the absence of concizumab. Conclusion: rFVIII/rFIX increased the thrombin peak in HA and HB plasma, respectively, both in the absence and presence of concizumab. The combined effects of rFVIII/rFIX with concizumab were mainly additive with an up to 20% additional effect caused by drug-drug interaction with rFVIII and a 10% reduction with rFIX. No signs of exaggerated thrombin generation were observed by combining concizumab with rFVIII/rFIX. Therefore, the data support rFVIII/rFIX use for bleed treatment in patients on concizumab prophylaxis. As rFVIII/rFIX and concizumab have additive effects in terms of thrombin generation capacity, data suggest that clinical effectiveness could be achieved with rFVIII/rFIX doses in the lower range recommended for such products. Disclosures Kjalke: Novo Nordisk A/S: Current Employment, Current equity holder in publicly-traded company. Andersen:Novo Nordisk A/S: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-4
Author(s):  
Maria Eugenia Chollet ◽  
Elisabeth Andersen ◽  
Maria Eugenia de la Morena-Barrio ◽  
Carlos Bravo-Perez ◽  
Marie-Christine Mowinckel ◽  
...  

Introduction To date studies on factor (F)VII and other hepatic vitamin K-dependent coagulation factors have relied on cell lines overexpressing these human genes. Even though these models have provided insight into the biology of these factors, they do not fully illustrate the in vivo situation. Thus, a relevant physiological model that mimics the in vivo processing of FVII in liver cells with potential for therapeutic use is needed. Methods Human induced pluripotent stem cells (hiPSCs) were differentiated into hepatocyte-like cells (iHLCs) using a non-transcription factor based, small molecule approach. Cells were grown in medium with vitamin K to ensure a correct gamma-carboxylation. Cellular FVII mRNA and protein were determined by RT-qPCR and proteomic and Western blot (WB), respectively. Secreted FVII antigen was measured by ELISA and WB and FVII activity was assessed by chromogenic assay and thrombin generation assay (TGA). Post-translational modifications of FVII protein (glycosylation) were studied using digestion with N-glycosylase F (PNGase F) and neuraminidase. Confocal immunofluorescence microscopy was used to assess the cellular expression of FVII and other vitamin K- dependent coagulation factors and inhibitors. Human primary hepatocytes or human plasma pool were used as a control in the assays. Results The resulting iHLCs expressed FVII mRNA in comparable levels to primary hepatocytes and cellular FVII peptides were identified by mass spectrometry studies. iHLCs secreted FVII at levels of around 70% compared to primary hepatocytes with detectable activity around 35% of the FVII activity level from primary hepatocytes. The TGA showed that cell medium from iHLCs when mixed with FVII deficient plasma was able to induce thrombin generation faster than the FVII depleted plasma alone (lagtime 3.2 vs 27.6 s, respectively). PNGase-F treatment showed that FVII secreted by iHLCs was N-glycosylated. Intracellular FVII was detected by WB as a band of approximately 63 kDa, slightly larger than FVII from plasma pool but similar to FVII from primary hepatocytes. Moreover, additional coagulation factors and inhibitors such as FII, FX, protein C and antithrombin were detected both at the mRNA and protein levels in the cells. Conclusions Stem cell-derived iHLCs produce and secrete FVII at physiologically relevant levels. The resulting FVII showed similar post-translational modifications to plasma FVII although some differences in proteolysis could be inferred. This iHLCs-derived FVII is able to initiate the extrinsic coagulation pathway. Our data support that these iHLCs can serve as a highly relevant model to study FVII and other vitamin K-dependent coagulation factors in vitro and constitute an important step towards the development of novel cell-based therapies for both FVII and other vitamin K-dependent coagulation factor deficiencies. Disclosures No relevant conflicts of interest to declare.


2014 ◽  
Vol 40 (02) ◽  
pp. 186-194 ◽  
Author(s):  
Richard Marlar ◽  
Jana Gausman ◽  
James Engel

The clinical hemostasis laboratory is a complex testing arena which employs numerous coagulation assays and spans several different test methodologies. Adding further complexity, these test results are expressed in a wide variety of unique units (concentration, activity, time, percentage, and ratio). Unfortunately, many of these reference values are derived from a local plasma pool or manufacturer's standards, as there are few established international standards. These three main issues complicate the validation and performance of the coagulation testing. Before an assay can be introduced into clinical use, both analytical and clinical performance parameters must be validated or verified using the standard validation procedures of the laboratory. This article summarizes the initial evaluation and validation processes of the coagulation laboratory, which sometimes can be difficult concepts to implement. A standardized validation protocol is described in this article and, if used, will help to objectively evaluate the assay performance and determine if it meets acceptable laboratory criteria.


2012 ◽  
Vol 108 (12) ◽  
pp. 2243-2250 ◽  
Author(s):  
Ana Rodriguez-Mateos ◽  
Maria Jose Oruna-Concha ◽  
Catherine Kwik-Uribe ◽  
Alberto Vidal ◽  
Jeremy P. E. Spencer

The beneficial effects of cocoa on vascular function are mediated by the absorption of monomeric flavanols into the circulation from the small intestine. As such, an understanding of the impact of the food matrix on the delivery of flavanols to the circulation is critical in assessing the potential vascular impact of a food. In the present study, we investigated the impact of carbohydrate type on flavanol absorption and metabolism from chocolate. A randomised, double-blind, three-arm cross-over study was conducted, where fifteen volunteers were randomly assigned to either a high-flavanol (266 mg) chocolate containing maltitol, a high-flavanol (251 mg) chocolate with sucrose or a low-flavanol (48 mg) chocolate with sucrose. Test chocolates were matched for micro- and macronutrients, including the alkaloids theobromine and caffeine, and were similar in taste and appearance. Total flavanol absorption was lower after consumption of the maltitol-containing test chocolate compared with following consumption of its sucrose-containing equivalent (P = 0·002). Although the O-methylation pattern observed for absorbed flavanols was unaffected by sugar type, individual levels of unmethylated ( − )-epicatechin metabolites, 3′-O-methyl-epicatechin and 4′-O-methyl-epicatechin metabolites were lower for the maltitol-containing test chocolate compared with the sucrose-containing equivalent. Despite a reduction in the total plasma pool of flavanols, the maximum time (Tmax) was unaffected. The present data indicate that full assessment of intervention treatments is vital in future intervention trials with flavanols and that carbohydrate content is an important determinant for the optimal delivery of flavanols to the circulation.


2009 ◽  
Vol 83 (7) ◽  
pp. 3288-3297 ◽  
Author(s):  
Zhong-Min Ma ◽  
Mars Stone ◽  
Mike Piatak ◽  
Becky Schweighardt ◽  
Nancy L. Haigwood ◽  
...  

ABSTRACT To define the ratio of simian immunodeficiency virus (SIV) RNA molecules to infectious virions in plasma, a ramp-up-stage plasma pool was made from the earliest viral RNA (vRNA)-positive plasma samples (collected approximately 7 days after inoculation) from seven macaques, and a set-point-stage plasma pool was made from plasma samples collected 10 to 16 weeks after peak viremia from seven macaques; vRNA levels in these plasma pools were determined, and serial 10-fold dilutions containing 1 to 1,500 vRNA copies/ml were made. Intravenous (i.v.) inoculation of a 1-ml aliquot of diluted ramp-up-stage plasma containing 20 vRNA copies infected 2 of 2 rhesus macaques, while for the set-point-stage plasma, i.v. inoculation with 1,500 vRNA copies was needed to transmit infection. Further, when the heat-inactivated set-point-stage plasma pool was mixed with ramp-up-stage virions, infection of inoculated macaques was blocked. Notably, 2 of 2 animals inoculated with 85 ml of a pre-ramp-up plasma pool containing <3 SIV RNA copies/ml developed SIV infections characterized by high levels of viral replication, demonstrating that “vRNA-negative” plasma collected from macaques in the pre-ramp-up stage is infectious. Furthermore, there is a high ratio of infectious virions to total virions in ramp-up-stage plasma (between 1:1 and 1:10) and a lower ratio in set-point-stage plasma (between 1:75 and 1:750). Heat-inactivated chronic-stage plasma can “neutralize” the highly infectious ramp-up-stage virions. These findings have implications for the understanding of the natural history of SIV and human immunodeficiency virus infection and transmission.


Sign in / Sign up

Export Citation Format

Share Document