scholarly journals Range eclipse leads to tenuous survival of a rare lizard species on a barrier atoll

Oryx ◽  
2021 ◽  
pp. 1-10
Author(s):  
Jonathan Q. Richmond ◽  
Elijah Wostl ◽  
Robert N. Reed ◽  
Robert N. Fisher

Abstract Rediscovery of living populations of a species that was presumed to be extirpated can generate new narratives for conservation in areas suffering from losses in biodiversity. We used field observations and DNA sequence data to verify the rediscovery of the Critically Endangered scincid lizard Emoia slevini on Dåno′, an islet off the coast of Guam in the southern Mariana Islands, where for > 20 years it had been considered possibly extirpated. Endemic to the Marianas, E. slevini has declined throughout its range and no longer occurs on as many as five islands from which it was historically known, most likely because of interactions with invasive species and loss of native forest. Our results show that individuals from Dåno′, the type locality for E. slevini, are genetically similar but not identical to E. slevini on Sarigan and Alamagan to the north, and that E. slevini is a close evolutionary relative to another congener in the southern Marianas that is currently recognized as Emoia atrocostata but probably represents an undescribed species in this archipelago. We also show that other, more broadly distributed species of Emoia occurring on Dåno′ are distant relatives to E. slevini and the Mariana lineage of E. atrocostata, providing further evidence of the distinctiveness of these taxa. The rediscovery of E. slevini on Dåno′ following rodent eradication and culling of a population of monitor lizards suggests that management of invasive species is key to the recovery of this skink in the Mariana Islands, and that a range eclipse on the larger neighbouring island of Guam best explains why the rediscovery took place at the periphery of the species’ historic range. A Chamorro abstract can be found in the supplementary material.

2009 ◽  
Vol 34 (3) ◽  
pp. 580-594 ◽  
Author(s):  
Anthony R. Magee ◽  
Ben-Erik van Wyk ◽  
Patricia M. Tilney ◽  
Stephen R. Downie

Generic circumscriptions and phylogenetic relationships of the Cape genera Capnophyllum, Dasispermum, and Sonderina are explored through parsimony and Bayesian inference analyses of nrDNA ITS and cpDNA rps16 intron sequences, morphology, and combined molecular and morphological data. The relationship of these genera with the North African genera Krubera and Stoibrax is also assessed. Analyses of both molecular data sets place Capnophyllum, Dasispermum, Sonderina, and the only southern African species of Stoibrax (S. capense) within the newly recognized Lefebvrea clade of tribe Tordylieae. Capnophyllum is strongly supported as monophyletic and is distantly related to Krubera. The monotypic genus Dasispermum and Stoibrax capense are embedded within a paraphyletic Sonderina. This complex is distantly related to the North African species of Stoibrax in tribe Apieae, in which the type species, Stoibrax dichotomum, occurs. Consequently, Dasispermum is expanded to include both Sonderina and Stoibrax capense. New combinations are formalized for Dasispermum capense, D. hispidum, D. humile, and D. tenue. An undescribed species from the Tanqua Karoo in South Africa is also closely related to Capnophyllum and the Dasispermum–Sonderina complex. The genus Scaraboides is described herein to accommodate the new species, S. manningii. This monotypic genus shares the dorsally compressed fruit and involute marginal wings with Capnophyllum, but is easily distinguished by its erect branching habit, green leaves, scabrous umbels, and fruit with indistinct median and lateral ribs, additional solitary vittae in each marginal wing, and parallel, closely spaced commissural vittae. Despite the marked fruit similarities with Capnophyllum, analyses of DNA sequence data place Scaraboides closer to the Dasispermum–Sonderina complex, with which it shares the erect habit, green (nonglaucous) leaves, and scabrous umbels.


2001 ◽  
Vol 79 (12) ◽  
pp. 1465-1476 ◽  
Author(s):  
Han-Gu Choi ◽  
Myung-Sook Kim ◽  
Michael D Guiry ◽  
Gary W Saunders

The aim of this study was to reassess monophyly of the genus Polysiphonia and determine the phylogenetic affinities of its component lineages among related red algae belonging to the Rhodomelaceae. Our "total evidence" approach, combining 28 anatomical characters and small-subunit ribosomal DNA sequence data for 25 ceramialean algae including 14 species of Polysiphonia sensu lato (including two species of the recently described genus Neosiphonia) and nine related Rhodomelaceae, indicates that Polysiphonia sensu lato consists of three strongly supported clades, Polysiphonia group, Neosiphonia group, and a "multipericentral" group, and a single taxon lineage consisting of Womersleyella setacea. The type species of the genus, Polysiphonia urceolata (= Polysiphonia stricta) from the north Atlantic, formed a distinct clade with Polysiphonia morrowii and Polysiphonia pacifica from the northwest and northeast Pacific, respectively. The Neosiphonia group included Neosiphonia japonica and Neosiphonia savatieri from the northwest Pacific, as originally proposed, Polysiphonia harveyi from the north Atlantic, which shares diagnostic features with this genus, and the anomalous Polysiphonia elongata and Polysiphonia virgata from the north Atlantic and South Africa, respectively. Boergeseniella and Vertebrata from the north Atlantic and Enelittosiphonia from the northwest Pacific associated solidly with the multipericentral Polysiphonia fucoides and Polysiphonia nigra from the north Atlantic. The implications for the taxonomy of Polysiphonia sensu lato and related genera within the Rhodomelaceae are discussed.Key words: Neosiphonia, nuclear small-subunit rDNA, phylogeny, Polysiphonia, Rhodomelaceae, Rhodophyta, systematics.


2021 ◽  
Author(s):  
Luca Mirimin ◽  
Dulaney Miller ◽  
Sara Fernandez

This protocol is intended to provide guidelines on the curation and establishment of a specimen/tissue bank and associated DNA sequence data to be used as reference material/data for subsequent environmental DNA (eDNA) analysis, with particular emphasis on marine non-indigenous and invasive species.


Zootaxa ◽  
2012 ◽  
Vol 3229 (1) ◽  
pp. 47 ◽  
Author(s):  
ROSS A. SADLIER ◽  
TONY WHITAKER ◽  
PERRY L. WOOD ◽  
AARON M. BAUER

A new species of skink in the genus Caledoniscincus is described from the northwest region of New Caledonia. It is knownfrom two locations, one on the coast at Pointe de Vavouto north of Koné, the other on the slopes of the Massif d’Oua-zangou, an isolated mountain 30 km to the north. Typical of all members of the genus, adult males and females of the newspecies are sexually dichromatic. The new species, Caledoniscincus constellatus sp. nov., has a bold, white midlateralstripe, a feature which distinguishes it from most other species of Caledoniscincus except the regionally sympatric C. hap-lorhinus (Günther) and C. austrocaledonicus (Bavay), from which it can be distinguished by a unique pattern of contactbetween the pale midlateral stripe and the ear. DNA sequence data for the ND2 mitochondrial gene identifies a high levelof genetic differentiation between the new species and all other Caledoniscincus, further supporting its distinctiveness asan independent evolutionary lineage. The species is of high conservation concern given its restricted distribution in a re-gion that has been, and will continue to be, heavily impacted by human occupation, and would be ranked as Critically Endangered under IUCN criteria.


2020 ◽  
Author(s):  
Charles Blend ◽  
Gabor Racz

Steganoderma eamiqtrema n. sp. and a single unidentified specimen of Steganoderma Stafford, 1904 (Zoogonidae: Lepidophyllinae) obtained from the intestine of the greenstriped rockfish, Sebastes elongatus Ayres, 1859, and the flag rockfish, Sebastes rubrivinctus (Jordan and Gilbert, 1880) (Scorpaeniformes: Sebastidae), collected from 190–200 m depths off Oregon, USA, are described. The new species is distinguished from its seven other congeners by a diagnostic combination of morphological features including an elongate oval to spindle-shaped body, a clavate to comma-shaped cirrus pouch located in the forebody and hindbody, a bipartite seminal vesicle, a bifurcal or just post-bifurcal genital pore, a larger ventral than oral sucker, and a smooth testes and ovary with a relatively small distance between them. We present an updated key to the eight species now in Steganoderma and provide a list of parasites known from Se. elongatus and Se. rubrivinctus. The discovery of S. eamiqtrema in Se. elongatus represents the second species of zoogonid known from this host, and the finding of Steganoderma sp. in Se. rubrivinctus represents the first report of a digenean from this host species. A detailed discussion also is given of the type species, S. formosum Stafford, 1904, and questions are raised as to whether this species has a worldwide distribution and infects such a wide variety of fish hosts. We present evidence including variation we observed in redescriptions of the type species, query the implausible idea that there could be gene flow between conspecific helminths geographically separated in the North Atlantic and North Pacific Oceans over such a vast geological period, and offer the possibility that some prior reports of S. formosum may, indeed, be S. eamiqtrema; all of which suggests S. formosum sensu lato may be part of a species complex and not the same worldwide species. Steganoderma is represented in the deep sea by S. eamiqtrema, S. formosum, and Steganoderma sp., and limited speculation is given as to the host specificity of this genus and life history strategies of the new species in deeper waters. Finally, molecular studies of species of Steganoderma are sorely needed (i.e., there is no DNA sequence data currently available in GenBank for any species of this genus), and we suspect that with further molecular, morphological, and life history work, this genus will be taxonomically divided up.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1006B-1006
Author(s):  
Ping Lang ◽  
Fenny Dane ◽  
Thomas L. Kubisiak ◽  
Hongwen Huang

The genus Castanea (Fagaceae), which contains three sections and seven species, is widely distributed in the deciduous forests of the Northern Hemisphere. The phylogeny of Castanea was estimated using DNA sequence data from five different regions of the chloroplast genome. Sequencing results support the genus Castanea as a paraphyletic group with C. crenata, the Japanese chestnut, representing an early divergence in the genus. The three Chinese species form a strongly supported sister clade to the North American and European clade. A unique westward expansion of extant Castanea species is hypothesized with Castanea originating in eastern Asia, an initial diversification within Asia during the Eocene, followed by intercontinental dispersion and divergence between the Chinese and European/North American species during the Oligocene and a split between the European and North American species in the early Miocene. The differentiation within North America and China might have occurred in late Miocene or early Pliocence. The North America species are supported as a clade with C. pumila var. ozarkensis, the Ozark chinkapin, as the basal lineage, sister to the group comprising C. pumila var. pumila, the Allegheny chinkapin, and C. dentata, the American chestnut. Morphological evolution of one nut per bur in the genus may have occurred independently on two continents.


2016 ◽  
Vol 29 (3) ◽  
pp. 218 ◽  
Author(s):  
Ian R. H. Telford ◽  
Kanchana Pruesapan ◽  
Peter C. van Welzen ◽  
Jeremy J. Bruhl

Synostemon trachyspermus (F.Muell.) I.Telford & Pruesapan (Phyllanthaceae, Phyllantheae) is shown, by morphological studies and phylogenetic analysis using nrITS DNA sequence data, to be a heterogeneous species assemblage of four species. Phyllanthus rhytidospermus F.Muell. ex Müll.Arg., with a new combination provided as Synostemon rhytidospermus (F.Muell. ex Müll.Arg.) I.Telford & Pruesapan, and Sauropus hubbardii Airy Shaw, with a new combination as Synostemon hubbardii (Airy Shaw) I.Telford & Pruesapan, are re-instated as species. Phyllanthus arnhemicus S.Moore is lectotypified and placed in synonomy under Synostemon lissocarpus (S.Moore) I.Telford & Pruesapan, which is the new combination provided for Phyllanthus lissocarpus S.Moore (syn. Sauropus lissocarpus (S.Moore) Airy Shaw). Synostemon umbrosus I.Telford & J.J.Bruhl, a rare endemic from the Kimberley, Western Australia, is named as new. The newly described S. hamersleyensis I.Telford & Naaykens, endemic to the Pilbara, Western Australia, and the north-eastern Queensland endemic Sauropus aphyllus J.T.Hunter & J.J.Bruhl are shown to be closely related; the new combination Synostemon aphyllus (J.T.Hunter & J.J.Bruhl) I.Telford & Pruesapan is provided for the latter. Sauropus sp. A of Flora of the Kimberley Region, previously included within S. trachyspermus sens.lat., shows a more distant relationship and is named as Synostemon judithae I.Telford & J.J.Bruhl. Notes on distribution, habitat, phenology, conservation status, photomicrographs of seeds and a key to identification of the species are provided.


2014 ◽  
Vol 68 (4) ◽  
pp. 549-558 ◽  
Author(s):  
Philipp Vogt ◽  
Maria Miljutina ◽  
Michael J. Raupach

The Auk ◽  
2007 ◽  
Vol 124 (2) ◽  
pp. 537-551 ◽  
Author(s):  
John Klicka ◽  
Garth M. Spellman

Abstract Because they share several morphological and ecological characters, the North American sparrow (Emberizidae) genera Ammodramus, Passerculus, and Xenospiza have historically been considered members of a well-defined “grassland” sparrow assemblage. Relationships among the 11 members of this group have been the subject of much taxonomic debate, yet no comprehensive molecular assessment of relationships has been done. We investigated these relationships using mitochondrial DNA sequence data that included complete cytochrome-b and ND2 genes. Phylogenetic reconstructions derived via parsimony, likelihood, and Bayesian methods were congruent. The grassland sparrows, as presently configured, are polyphyletic. Pooecetes gramineus, Amphispiza belli (but not A. quinquestriata and A. bilineata), Oriturus superciliosus, and all three species of Melospiza are included in a reconfigured clade, whereas the traditional forms of Ammodramus savannarum, humeralis, and aurifons are placed well outside of these. Within the clade of interest, Ammodramus remains polyphyletic, with leconteii, maritimus, nelsoni, and caudacutus forming a well-resolved clade apart from henslowii and bairdii. The latter are in another strongly supported clade that also includes Passerculus and a Xenospiza-Melozpiza sister pairing. Pooecetes, Amphispiza (belli), and Oriturus represent early lineages in this clade that today have no close living relatives. The polyphyly of the genus Ammodramus is likely the result of morphological convergence attributable to similar adaptive responses to the occupation of similar habitats. In general, the morphological and ecological factors that have defined the grassland sparrows are poor indicators of relatedness. Taxonomic revisions are suggested. Evaluación Molecular del Clado de Gorriones de Pastizales de Norte América


1997 ◽  
Vol 87 (5) ◽  
pp. 565-571 ◽  
Author(s):  
Bradley R. Kropp ◽  
Dane R. Hansen ◽  
Paul G. Wolf ◽  
Karen M. Flint ◽  
Sherman V. Thomson

The identity of a Puccinia species occurring on the introduced weed dyer's woad (Isatis tinctoria) was studied using sequences from the internal transcribed spacer of the nuclear ribosomal DNA. The relationship of this fungus to other Puccinia species occurring on the family Brassicaceae in Europe and North America was examined, and we tested the hypothesis that P. thlaspeos and P. monoica are correlated species. The data suggest that the Puccinia species from dyer's woad is closely related to the North American species P. consimilis and may be derived from an indigenous strain of P. consimilis that switched hosts. Thus, the Puccinia species from dyer's woad is probably native to North America and is unlikely to cause disease epidemics on indigenous plants if used as a biological control agent against dyer's woad. P. thlaspeos appears to be polyphyletic and, therefore, P. thlaspeos and P. monoica do not appear to be correlated species. Additional DNA sequence data will be needed to clarify further the phylogeny of Puccinia species on the family Brassicaceae.


Sign in / Sign up

Export Citation Format

Share Document