Horizontal and vertical transmission of mouse class I MHC sequence in Schistosoma mansoni

Parasitology ◽  
2001 ◽  
Vol 123 (2) ◽  
pp. 163-168 ◽  
Author(s):  
A. IMASE ◽  
K. KOBAYASHI ◽  
H. OHMAE ◽  
H. MATSUDA ◽  
Y. IWAMURA

The mouse major histocompatibility complex (MHC) class I sequence was detected in 8-week-old Schistosoma mansoni by in situ polymerase chain reaction (in situ PCR). The signals to the mouse class I MHC sequence were observed in the nuclei of the mesenchymal and reproductive cells of S. mansoni. Signals were also observed in the cytoplasm of the tegumental tubercles. This finding suggested the possibility of MHC gene transfer from the host to schistosomes. Furthermore, the class I MHC sequence was detected in the DNA extracted from the cercariae of S. mansoni by nested PCR. Neither the nucleotide sequence of class I MHC detected in adult worm DNA nor that of class I MHC detected in the host (mouse) DNA was identical with that of class I MHC detected in the cercarial DNA. From the data we assumed that S. mansoni may have retained their own mouse class I MHC sequence in their genome throughout their life-cycle.

1983 ◽  
Vol 157 (2) ◽  
pp. 720-729 ◽  
Author(s):  
S L Swain ◽  
R W Dutton ◽  
R Schwab ◽  
J Yamamoto

Human T cells respond strongly to mouse major histocompatibility complex (MHC) antigens. The response is directed predominantly to the polymorphic determinants of the MHC antigens and there is little or no response to the nonpolymorphic determinants or to non-MHC antigens. Human cytotoxic T lymphocytes (CTL) are generated specific for the mouse class I MHC antigens and the CTL effectors are blocked by anti-Leu-2a antisera. Human interleukin 2-producing T cells are generated specific for mouse class II antigens and their induction is blocked by anti-Leu-3a antisera. These and other considerations lead us to propose a model for the T cell receptor that provides an explanation for several of the features of T cell recognition. In this model, the recognition of the "class" (I or II) of MHC antigen is separate from the recognition of the polymorphic determinants. We suggest that the initial recognition of the conserved "class" determinants positions another domain of the receptor so that it can only engage with the part of the MHC molecule carrying the polymorphic determinants.


Author(s):  
G. W. Hacker ◽  
I. Zehbe ◽  
J. Hainfeld ◽  
A.-H. Graf ◽  
C. Hauser-Kronberger ◽  
...  

In situ hybridization (ISH) with biotin-labeled probes is increasingly used in histology, histopathology and molecular biology, to detect genetic nucleic acid sequences of interest, such as viruses, genetic alterations and peptide-/protein-encoding messenger RNA (mRNA). In situ polymerase chain reaction (PCR) (PCR in situ hybridization = PISH) and the new in situ self-sustained sequence replication-based amplification (3SR) method even allow the detection of single copies of DNA or RNA in cytological and histological material. However, there is a number of considerable problems with the in situ PCR methods available today: False positives due to mis-priming of DNA breakdown products contained in several types of cells causing non-specific incorporation of label in direct methods, and re-diffusion artefacts of amplicons into previously negative cells have been observed. To avoid these problems, super-sensitive ISH procedures can be used, and it is well known that the sensitivity and outcome of these methods partially depend on the detection system used.


2020 ◽  
Author(s):  
Xizheng Sun ◽  
Reika Tokunaga ◽  
Yoko Nagai ◽  
Ryo Miyahara ◽  
Akihiro Kishimura ◽  
...  

<p><a></a><a></a><a>We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I)</a> molecules on cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to the MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. The present strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed autoimmune diseases.</p>


Sign in / Sign up

Export Citation Format

Share Document