Phylogenetic analysis of freshwater fish trypanosomes from Europe using ssu rRNA gene sequences and random amplification of polymorphic DNA

Parasitology ◽  
2004 ◽  
Vol 130 (4) ◽  
pp. 405-412 ◽  
Author(s):  
W. C. GIBSON ◽  
J. LOM ◽  
H. PECKOVÁ ◽  
V. R. FERRIS ◽  
P. B. HAMILTON

The taxonomy and phylogenetic relationships of fish trypanosomes are uncertain. A collection of 22 cloned trypanosome isolates from 14 species of European freshwater fish and 1 species of African freshwater fish were examined by molecular phylogenetic analysis. The small subunit ribosomal RNA (ssu rRNA) genes of 8 clones were sequenced and compared with ssu rRNA gene sequences from a wider selection of vertebrate trypanosome isolates by phylogenetic analysis. All trypanosomes from freshwater fish fell in a single clade, subdivided into 3 groups. This clade sits within a larger, robust clade containing trypanosomes from marine fish and various amphibious vertebrates. All 22 trypanosome clones were analysed by random amplification of polymorphic DNA. The resulting dendrogram shows 3 groups, which are congruent with the groups identified in the ssu rRNA gene phylogeny. Two of the groups contain the majority of trypanosome isolates and within-group variation is slight. These groups do not separate purported trypanosome species distinguished by morphology or host origin, and thus these criteria do not appear to be reliable guides to genetic relationships among fish trypanosomes. However, we suggest that the 2 groups themselves may represent different species of fish trypanosomes. The polymorphic DNA markers we have identified will facilitate future comparisons of the biology of these 2 groups of fish trypanosomes.

2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4669-4674 ◽  
Author(s):  
Véronique Guérin-Faublée ◽  
Jean-Pierre Flandrois ◽  
Catherine Pichat ◽  
Maria Laura Boschiroli ◽  
Brigitte Lamy

Three independent strains of a rapidly growing, non-chromogenic member of the genus Mycobacterium were isolated from lymph nodes of French cattle. Identification of the isolates was carried out using a polyphasic approach. The nearly complete SSU rRNA gene sequences (>1200 bp) of the strains MLB-A23, MLB-A30 and MLB-A84T were identical. A phylogenetic analysis of these unique SSU rRNA gene sequences showed that these strains were most closely related to Mycobacterium intermedium . Further phylogenetic analysis based on concatenated sequences (2854 bp) of four housekeeping genes (hsp65, rpoB, sodA and tuf), the transfer–messenger RNA (tmRNA) and SSU rRNA genes indicated that these three strains represented a distinct species that shares a common ancestor with M. intermedium . Phylogenetic and phenotypic data strongly indicate that the strains MLB-A23, MLB-A30 and MLB-A84T belong to a novel mycobacterial species for which the name Mycobacterium bourgelatii sp. nov. is proposed. The type strain is MLB-A84T ( = CIP 110557T = DSM 45746T).


2008 ◽  
Vol 74 (12) ◽  
pp. 3710-3717 ◽  
Author(s):  
Jennifer J. Joyner ◽  
R. Wayne Litaker ◽  
Hans W. Paerl

ABSTRACT Dense blooms of the cyanobacterium Lyngbya wollei are increasingly responsible for declining water quality and habitat degradation in numerous springs, rivers, and reservoirs. This research represents the first molecular phylogenetic analysis of L. wollei in comparison with the traditional morphological characterization of this species. Specimens were collected from several springs in Florida and a reservoir in North Carolina. Segments of the small-subunit (SSU) rRNA and nifH genes were PCR amplified, cloned, and sequenced. The phylogenetic analysis of the SSU rRNA gene revealed sequences that fell into three distinct subclusters, each with >97% sequence similarity. These were designated operational taxonomic unit 1 (OTU1), OTU2, and OTU3. Similarly, the nifH sequences fell into three distinct subclusters named S1, S2, and S3. When either bulk samples or individual filaments were analyzed, we recovered OTU1 with S1, OTU2 with S2, and OTU3 with S3. The coherence between the three SSU rRNA gene and nifH subclusters was consistent with genetically distinct strains or species. Cells associated with subclusters OTU3 and S3 were significantly wider and longer than those associated with other subclusters. The combined molecular and morphological data indicate that the species commonly identified as L. wollei in the literature represents two or possibly more species. Springs containing OTU3 and S3 demonstrated lower ion concentrations than other collection sites. Geographical locations of Lyngbya subclusters did not correlate with residual dissolved inorganic nitrogen or phosphorus concentrations. This study emphasizes the need to complement traditional identification with molecular characterization to more definitively detect and characterize harmful cyanobacterial species or strains.


1999 ◽  
Vol 37 (9) ◽  
pp. 3037-3040 ◽  
Author(s):  
Joon-seok Chae ◽  
Michael Levy ◽  
John Hunt ◽  
Jack Schlater ◽  
Glen Snider ◽  
...  

Theileria sp.-specific small subunit (SSU) rRNA gene amplification confirmed the presence of the organism in cattle and inAmblyomma americanum and Dermacentor variabilisticks collected from a cattle herd in Missouri. Blood from the index animal had type A and type D Theileria SSU rRNA genes. The type D gene was also found in blood from two cohort cattle and tick tissues. The type A SSU rRNA gene was previously reported from bovineTheileria isolates from Texas and North Carolina; the type D gene was reported from a Texas cow with theileriosis.


1998 ◽  
Vol 64 (1) ◽  
pp. 294-303 ◽  
Author(s):  
Michael S. Rappé ◽  
Marcelino T. Suzuki ◽  
Kevin L. Vergin ◽  
Stephen J. Giovannoni

ABSTRACT The scope of marine phytoplankton diversity is uncertain in many respects because, like bacteria, these organisms sometimes lack defining morphological characteristics and can be a challenge to grow in culture. Here, we report the recovery of phylogenetically diverse plastid small-subunit (SSU) rRNA gene (rDNA) clones from natural plankton populations collected in the Pacific Ocean off the mouth of Yaquina Bay, Oreg. (OCS clones), and from the eastern continental shelf of the United States off Cape Hatteras, N.C. (OM clones). SSU rRNA gene clone libraries were prepared by amplifying rDNAs from nucleic acids isolated from plankton samples and cloning them into plasmid vectors. The PCR primers used for amplification reactions were designed to be specific for bacterial SSU rRNA genes; however, plastid genes have a common phylogenetic origin with bacteria and were common in both SSU rRNA gene clone libraries. A combination of restriction fragment length polymorphism analyses, nucleic acid sequencing, and taxon-specific oligonucleotide probe hybridizations revealed that 54 of the 116 OCS gene clones were of plastid origin. Collectively, clones from the OCS and OM libraries formed at least eight unique lineages within the plastid radiation, including gene lineages related to the classesBacillariophyceae, Cryptophyceae,Prymnesiophyceae, Chrysophyceae, andPrasinophyceae; for a number of unique clones, no close phylogenetic neighbors could be identified with confidence. Only a group of two OCS rRNA gene clones showed close identity to the plastid SSU rRNA gene sequence of a cultured organism [Emiliania huxleyi (Lohmann) Hay and Mohler; 99.8% similar]. The remaining clones could not be identified to the genus or species level. Although cryptic species are not as prevalent among phytoplankton as they are among their bacterial counterparts, this genetic survey nonetheless uncovered significant new information about phytoplankton diversity.


2003 ◽  
Vol 126 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Christophe Noël ◽  
Corinne Peyronnet ◽  
Delphine Gerbod ◽  
Virginia P Edgcomb ◽  
Pilar Delgado-Viscogliosi ◽  
...  

2018 ◽  
Author(s):  
Jeffrey S. McLean ◽  
Batbileg Bor ◽  
Thao T. To ◽  
Quanhui Liu ◽  
Kristopher A. Kerns ◽  
...  

ABSTRACTRecently, we discovered that a member of the Saccharibacteria/TM7 phylum (strain TM7x) isolated from the human oral cavity, has an ultra-small cell size (200-300nm), a highly reduced genome (705 Kbp) with limited de novo biosynthetic capabilities, and a very novel lifestyle as an obligate epibiont on the surface of another bacterium 1. There has been considerable interest in uncultivated phyla, particularly those that are now classified as the proposed candidate phyla radiation (CPR) reported to include 35 or more phyla and are estimated to make up nearly 15% of the domain Bacteria. Most members of the larger CPR group share genomic properties with Saccharibacteria including reduced genomes (<1Mbp) and lack of biosynthetic capabilities, yet to date, strain TM7x represents the only member of the CPR that has been cultivated and is one of only three CPR routinely detected in the human body. Through small subunit ribosomal RNA (SSU rRNA) gene surveys, members of the Saccharibacteria phylum are reported in many environments as well as within a diversity of host species and have been shown to increase dramatically in human oral and gut diseases. With a single copy of the 16S rRNA gene resolved on a few limited genomes, their absolute abundance is most often underestimated and their potential role in disease pathogenesis is therefore underappreciated. Despite being an obligate parasite dependent on other bacteria, six groups (G1-G6) are recognized using SSU rRNA gene phylogeny in the oral cavity alone. At present, only genomes from the G1 group, which includes related and remarkably syntenic environmental and human oral associated representatives1, have been uncovered to date. In this study we systematically captured the spectrum of known diversity in this phylum by reconstructing completely novel Class level genomes belonging to groups G3, G6 and G5 through cultivation enrichment and/or metagenomic binning from humans and mammalian rumen. Additional genomes for representatives of G1 were also obtained from modern oral plaque and ancient dental calculus. Comparative analysis revealed remarkable divergence in the host-associated members across this phylum. Within the human oral cavity alone, variation in as much as 70% of the genes from nearest oral clade (AAI 50%) as well as wide GC content variation is evident in these newly captured divergent members (G3, G5 and G6) with no environmental relatives. Comparative analyses suggest independent episodes of transmission of these TM7 groups into humans and convergent evolution of several key functions during adaptation within hosts. In addition, we provide evidence from in vivo collected samples that each of these major groups are ultra-small in size and are found attached to larger cells.


Author(s):  
Ran Li ◽  
Wenbao Zhuang ◽  
Congcong Wang ◽  
Hamed El-Serehy ◽  
Saleh A. Al-Farraj ◽  
...  

The morphology and molecular phylogeny of Plagiopyla ovata Kahl, 1931, a poorly known anaerobic ciliate, were investigated based on a population isolated from sand samples collected from the Yellow Sea coast at Qingdao, PR China. Details of the oral ciliature are documented for the first time to our knowledge and an improved species diagnosis is given. The small subunit ribosomal RNA (SSU rRNA) gene was newly sequenced and phylogenetic analyses revealed that P. ovata clusters within the monophyletic family Plagiopylidae. However, evolutionary relationships within both the family Plagiopylidae and the genus Plagiopyla remain obscure owing to undersampling, the lack of sequence data from known species and low nodal support or unstable topologies in gene trees. A key to the identification of the species of the genus Plagiopyla with validly published names is also supplied.


Diversity ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 198 ◽  
Author(s):  
Alexandra Y. Beliavskaia ◽  
Alexander V. Predeus ◽  
Sofya K. Garushyants ◽  
Maria D. Logacheva ◽  
Jun Gong ◽  
...  

Holospora-like bacteria (HLB) are obligate intracellular Alphaproteobacteria, inhabiting nuclei of Paramecium and other ciliates such as “Candidatus Hafkinia” is in Frontonia. The HLB clade is comprised of four genera, Holospora, Preeria, “Candidatus Gortzia”, and “Candidatus Hafkinia”. These bacteria have a peculiar life cycle with two morphological forms and some degree of specificity to the host species and the type of nucleus they inhabit. Here we describe a novel species of HLB—“Candidatus Gortzia yakutica” sp. nov.—a symbiont from the macronucleus of Paramecium putrinum, the first described HLB for this Paramecium species. The new endosymbiont shows morphological similarities with other HLB. The phylogenetic analysis of the SSU rRNA gene places it into the “Candidatus Gortzia” clade.


Sign in / Sign up

Export Citation Format

Share Document