scholarly journals Stopping and changing in adults with ADHD

2004 ◽  
Vol 35 (6) ◽  
pp. 807-816 ◽  
Author(s):  
E. M. BEKKER ◽  
C. C. OVERTOOM ◽  
J. L. KENEMANS ◽  
J. J. KOOIJ ◽  
I. DE NOORD ◽  
...  

Background. A lack of inhibitory control has been suggested to be the core deficit in children with attention deficit hyperactivity disorder (ADHD). This means that a primary deficit in behavioral inhibition mediates a cascade of secondary deficits in other executive functions, such as arousal regulation. Clinical observations have revealed that with increasing age symptoms of hyperactivity and impulsivity decline at a higher rate than those of inattention. This might imply that a deficit in attention rather than a lack of inhibitory control is the major feature in adult ADHD.Method. To study whether an attentional or inhibitory deficit predominates, the stop-signal task and the stop-change task were presented to 24 adults with ADHD combined subtype and 24 controls.Results. Relative to controls, the stop-signal reaction time (SSRT) was significantly more prolonged than the go-stimulus reaction time (RT) in patients with ADHD. This disproportionate elongation of the SSRT was comparable across tasks, even though the stop-change task exerted more complex (or at least different) demands on the inhibitory system than the stop-signal task. ADHD patients had a higher proportion of choice errors, possibly reflecting more premature responses. Specifically in the stop-change task, patients had more variable choice responses and made more inappropriate change responses, which may also reflect enhanced impulsivity.Conclusions. The results support a core deficit in behavioral inhibition in adults with ADHD. We further suggest that there is more evidence for a critical role of deficient inhibitory control in adults than in children with ADHD.

2019 ◽  
Author(s):  
Rebecca Monk ◽  
Adam Qureshi ◽  
Charlotte Rebecca Pennington ◽  
Iain Hamlin

BackgroundPrior research demonstrates that individuals who consume alcohol show diminished inhibitory control towards alcohol-related cues. However, such research contrasts predominantly alcoholic appetitive cues with non-alcoholic, non-appetitive cues (e.g., stationary items). As such, it is not clear whether it is specifically the alcoholic nature of the cues that influences impairments in inhibitory control or whether more general appetitive processes are at play.AimsThe current study examined the hitherto untested assertion that the disinhibiting effects of alcohol-related stimuli might generalise to other appetitive liquid stimuli, but not to non-appetitive liquid stimuli.MethodFifty-nine participants (Mage = 21.63, SD = 5.85) completed a modified version of the Stop Signal Task, which exposed them to visual stimuli of three types of liquids: Alcoholic appetitive (e.g., wine), non-alcoholic appetitive (e.g., water) and non-appetitive (e.g., washing-up liquid).ResultsConsistent with predictions, Stop-signal reaction time was significantly longer for appetitive (alcoholic, non-alcoholic) compared to non-appetitive stimuli. Participants were also faster and less error-prone when responding to appetitive relative to non-appetitive stimuli on go-trials. There were no apparent differences in stop signal reaction times between alcoholic and non-alcoholic appetitive products.ConclusionsThese findings suggest that decreases in inhibitory control in response to alcohol-related cues might generalise to other appetitive liquids, possibly due to evaluative conditioning. Implications for existing research methodologies include the use of appetitive control conditions and the diversification of cues within tests of alcohol-related inhibitory control.


Author(s):  
Martina Montalti ◽  
Marta Calbi ◽  
Valentina Cuccio ◽  
Maria Alessandra Umiltà ◽  
Vittorio Gallese

AbstractIn the last decades, the embodied approach to cognition and language gained momentum in the scientific debate, leading to evidence in different aspects of language processing. However, while the bodily grounding of concrete concepts seems to be relatively not controversial, abstract aspects, like the negation logical operator, are still today one of the main challenges for this research paradigm. In this framework, the present study has a twofold aim: (1) to assess whether mechanisms for motor inhibition underpin the processing of sentential negation, thus, providing evidence for a bodily grounding of this logic operator, (2) to determine whether the Stop-Signal Task, which has been used to investigate motor inhibition, could represent a good tool to explore this issue. Twenty-three participants were recruited in this experiment. Ten hand-action-related sentences, both in affirmative and negative polarity, were presented on a screen. Participants were instructed to respond as quickly and accurately as possible to the direction of the Go Stimulus (an arrow) and to withhold their response when they heard a sound following the arrow. This paradigm allows estimating the Stop Signal Reaction Time (SSRT), a covert reaction time underlying the inhibitory process. Our results show that the SSRT measured after reading negative sentences are longer than after reading affirmative ones, highlighting the recruitment of inhibitory mechanisms while processing negative sentences. Furthermore, our methodological considerations suggest that the Stop-Signal Task is a good paradigm to assess motor inhibition’s role in the processing of sentence negation.


Author(s):  
Graciela C. Alatorre-Cruz ◽  
Heather Downs ◽  
Darcy Hagood ◽  
Seth T. Sorensen ◽  
D. Keith Williams ◽  
...  

2019 ◽  
Vol 7 (4) ◽  
pp. 856-872 ◽  
Author(s):  
Alexander Weigard ◽  
Andrew Heathcote ◽  
Dóra Matzke ◽  
Cynthia Huang-Pollock

Mean stop-signal reaction time (SSRT) is frequently employed as a measure of response inhibition in cognitive neuroscience research on attention deficit/hyperactivity disorder (ADHD). However, this measurement model is limited by two factors that may bias SSRT estimation in this population: (a) excessive skew in “go” RT distributions and (b) trigger failures, or instances in which individuals fail to trigger an inhibition process in response to the stop signal. We used a Bayesian parametric approach that allows unbiased estimation of the shape of entire SSRT distributions and the probability of trigger failures to clarify mechanisms of stop-signal task deficits in ADHD. Children with ADHD displayed greater positive skew than their peers in both go RT and SSRT distributions. However, they also displayed more frequent trigger failures, which appeared to drive ADHD-related stopping difficulties. Results suggest that performance on the stop-signal task among children with ADHD reflects impairments in early attentional processes, rather than inefficiency in the stop process.


2020 ◽  
Vol 10 (12) ◽  
pp. 1013
Author(s):  
Sien Hu ◽  
Chiang-shan R. Li

Aging is associated with structural and functional changes in the hippocampus, and hippocampal dysfunction represents a risk marker of Alzheimer’s disease. Previously, we demonstrated age-related changes in reactive and proactive control in the stop signal task, each quantified by the stop signal reaction time (SSRT) and sequential effect computed as the correlation between the estimated stop signal probability and go trial reaction time. Age was positively correlated with the SSRT, but not with the sequential effect. Here, we explored hippocampal gray matter volume (GMV) and activation to response inhibition and to p(Stop) in healthy adults 18 to 72 years of age. The results showed age-related reduction of right anterior hippocampal activation during stop success vs. go trials, and the hippocampal activities correlated negatively with the SSRT. In contrast, the right posterior hippocampus showed higher age-related responses to p(Stop), but the activities did not correlate with the sequential effect. Further, we observed diminished GMVs of the anterior and posterior hippocampus. However, the GMVs were not related to behavioral performance or regional activities. Together, these findings suggest that hippocampal GMVs and regional activities represent distinct neural markers of cognitive aging, and distinguish the roles of the anterior and posterior hippocampus in age-related changes in cognitive control.


PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225437 ◽  
Author(s):  
Anton Leontyev ◽  
Takashi Yamauchi

2006 ◽  
Vol 18 (11) ◽  
pp. 1843-1849 ◽  
Author(s):  
Darlene Floden ◽  
Donald T. Stuss

Inhibitory control is an essential part of behavior. Comprehensive knowledge of the neural underpinnings will shed light on complex behavior, its breakdown in neurological and psychological disorders, and current and future techniques for the pharmacological or structural remediation of disinhibition. This study investigated the neural mechanisms involved in rapid response inhibition. The stop signal task was used to estimate inhibitory speed in a group of neurologically normal control subjects and patients with discrete frontal lobe lesions. Task procedures were controlled to rule out probable confounds related to strategic changes in task effort. The findings indicate that the frontal lobes are necessary for inhibitory control and, furthermore, that the integrity of the right superior medial frontal region is key for rapid inhibitory control under conditions controlling for strategically slow responses, forcing reliance more on a rapid, “kill-switch” inhibitory system. These results are interpreted within an anatomical framework of corticospinal motor control.


2014 ◽  
Vol 26 (8) ◽  
pp. 1601-1614 ◽  
Author(s):  
Corey N. White ◽  
Eliza Congdon ◽  
Jeanette A. Mumford ◽  
Katherine H. Karlsgodt ◽  
Fred W. Sabb ◽  
...  

The stop-signal task, in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision making, a drift-diffusion model of simple decisions was fitted to stop-signal task data from go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the go stimulus correlated with greater activation in the right frontal pole for both go and stop trials. On stop trials, stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and BG. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology.


2013 ◽  
Vol 25 (2) ◽  
pp. 157-174 ◽  
Author(s):  
Bram B. Zandbelt ◽  
Mirjam Bloemendaal ◽  
Janna Marie Hoogendam ◽  
René S. Kahn ◽  
Matthijs Vink

Stopping an action requires suppression of the primary motor cortex (M1). Inhibitory control over M1 relies on a network including the right inferior frontal cortex (rIFC) and the supplementary motor complex (SMC), but how these regions interact to exert inhibitory control over M1 is unknown. Specifically, the hierarchical position of the rIFC and SMC with respect to each other, the routes by which these regions control M1, and the causal involvement of these regions in proactive and reactive inhibition remain unclear. We used off-line repetitive TMS to perturb neural activity in the rIFC and SMC followed by fMRI to examine effects on activation in the networks involved in proactive and reactive inhibition, as assessed with a modified stop-signal task. We found repetitive TMS effects on reactive inhibition only. rIFC and SMC stimulation shortened the stop-signal RT (SSRT) and a shorter SSRT was associated with increased M1 deactivation. Furthermore, rIFC and SMC stimulation increased right striatal activation, implicating frontostriatal pathways in reactive inhibition. Finally, rIFC stimulation altered SMC activation, but SMC stimulation did not alter rIFC activation, indicating that rIFC lies upstream from SMC. These findings extend our knowledge about the functional organization of inhibitory control, an important component of executive functioning, showing that rIFC exerts reactive control over M1 via SMC and right striatum.


2019 ◽  
Author(s):  
Andre Chevrier ◽  
Russell J. Schachar

AbstractBackgroundAltered brain activity that has been observed in attention deficit hyperactivity disorder (ADHD) while performing cognitive control tasks like the stop signal task (SST), has generally been interpreted as reflecting either weak (under-active) or compensatory (over-active) versions of the same functions as in healthy controls. If so, then regional activities that correlate with the efficiency of inhibitory control (i.e. stop signal reaction time, SSRT) in healthy subjects should also correlate with SSRT in ADHD. Here we test the alternate hypothesis that BOLD differences might instead reflect the redirection of neural processing resources normally used for task-directed inhibitory control, toward actively managing symptomatic behavior. If so, then activities that correlate with SSRT in TD should instead correlate with inattentive and hyperactive symptoms in ADHD.MethodsWe used fMRI in 14 typically developing (TD) and 14 ADHD adolescents performing the SST, and in a replication sample of 14 healthy adults. First we identified significant group BOLD differences during all phases of activity in the SST (i.e. warning, response, reactive inhibition, error detection and post-error slowing). Next, we correlated these phases of activity with SSRT in TD, and with SSRT, inattentive and hyperactive symptom scores in ADHD. We then identified whole brain significant correlations in regions of significant group difference in activity.ResultsOnly three regions of significant group difference were correlated with SSRT in TD and replication groups (left and right inferior frontal gyri (IFG) during error detection, and hypothalamus during post-error slowing). Consistent with regions of altered activity managing symptomatic behavior instead of task-directed behavior, left IFG correlated with greater inattentive score, right IFG correlated with lower hyperactive score, and hypothalamus correlated with greater inattentive score and oppositely correlated with SSRT compared to TD.ConclusionsResults are consistent with stimuli that elicit task-directed integration of neural processing in healthy subjects, instead directing integrated function towards managing symptomatic behavior in ADHD. The ability of the current approach to determine whether altered neural activities reflect comparable functions in ADHD and control groups has broad implications for the development and monitoring of therapeutic interventions.


Sign in / Sign up

Export Citation Format

Share Document