Inhibitory Control is Slowed in Patients with Right Superior Medial Frontal Damage

2006 ◽  
Vol 18 (11) ◽  
pp. 1843-1849 ◽  
Author(s):  
Darlene Floden ◽  
Donald T. Stuss

Inhibitory control is an essential part of behavior. Comprehensive knowledge of the neural underpinnings will shed light on complex behavior, its breakdown in neurological and psychological disorders, and current and future techniques for the pharmacological or structural remediation of disinhibition. This study investigated the neural mechanisms involved in rapid response inhibition. The stop signal task was used to estimate inhibitory speed in a group of neurologically normal control subjects and patients with discrete frontal lobe lesions. Task procedures were controlled to rule out probable confounds related to strategic changes in task effort. The findings indicate that the frontal lobes are necessary for inhibitory control and, furthermore, that the integrity of the right superior medial frontal region is key for rapid inhibitory control under conditions controlling for strategically slow responses, forcing reliance more on a rapid, “kill-switch” inhibitory system. These results are interpreted within an anatomical framework of corticospinal motor control.

2014 ◽  
Vol 26 (8) ◽  
pp. 1601-1614 ◽  
Author(s):  
Corey N. White ◽  
Eliza Congdon ◽  
Jeanette A. Mumford ◽  
Katherine H. Karlsgodt ◽  
Fred W. Sabb ◽  
...  

The stop-signal task, in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision making, a drift-diffusion model of simple decisions was fitted to stop-signal task data from go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the go stimulus correlated with greater activation in the right frontal pole for both go and stop trials. On stop trials, stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and BG. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology.


2013 ◽  
Vol 25 (2) ◽  
pp. 157-174 ◽  
Author(s):  
Bram B. Zandbelt ◽  
Mirjam Bloemendaal ◽  
Janna Marie Hoogendam ◽  
René S. Kahn ◽  
Matthijs Vink

Stopping an action requires suppression of the primary motor cortex (M1). Inhibitory control over M1 relies on a network including the right inferior frontal cortex (rIFC) and the supplementary motor complex (SMC), but how these regions interact to exert inhibitory control over M1 is unknown. Specifically, the hierarchical position of the rIFC and SMC with respect to each other, the routes by which these regions control M1, and the causal involvement of these regions in proactive and reactive inhibition remain unclear. We used off-line repetitive TMS to perturb neural activity in the rIFC and SMC followed by fMRI to examine effects on activation in the networks involved in proactive and reactive inhibition, as assessed with a modified stop-signal task. We found repetitive TMS effects on reactive inhibition only. rIFC and SMC stimulation shortened the stop-signal RT (SSRT) and a shorter SSRT was associated with increased M1 deactivation. Furthermore, rIFC and SMC stimulation increased right striatal activation, implicating frontostriatal pathways in reactive inhibition. Finally, rIFC stimulation altered SMC activation, but SMC stimulation did not alter rIFC activation, indicating that rIFC lies upstream from SMC. These findings extend our knowledge about the functional organization of inhibitory control, an important component of executive functioning, showing that rIFC exerts reactive control over M1 via SMC and right striatum.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1602
Author(s):  
Christian Mancini ◽  
Giovanni Mirabella

The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.


2004 ◽  
Vol 35 (6) ◽  
pp. 807-816 ◽  
Author(s):  
E. M. BEKKER ◽  
C. C. OVERTOOM ◽  
J. L. KENEMANS ◽  
J. J. KOOIJ ◽  
I. DE NOORD ◽  
...  

Background. A lack of inhibitory control has been suggested to be the core deficit in children with attention deficit hyperactivity disorder (ADHD). This means that a primary deficit in behavioral inhibition mediates a cascade of secondary deficits in other executive functions, such as arousal regulation. Clinical observations have revealed that with increasing age symptoms of hyperactivity and impulsivity decline at a higher rate than those of inattention. This might imply that a deficit in attention rather than a lack of inhibitory control is the major feature in adult ADHD.Method. To study whether an attentional or inhibitory deficit predominates, the stop-signal task and the stop-change task were presented to 24 adults with ADHD combined subtype and 24 controls.Results. Relative to controls, the stop-signal reaction time (SSRT) was significantly more prolonged than the go-stimulus reaction time (RT) in patients with ADHD. This disproportionate elongation of the SSRT was comparable across tasks, even though the stop-change task exerted more complex (or at least different) demands on the inhibitory system than the stop-signal task. ADHD patients had a higher proportion of choice errors, possibly reflecting more premature responses. Specifically in the stop-change task, patients had more variable choice responses and made more inappropriate change responses, which may also reflect enhanced impulsivity.Conclusions. The results support a core deficit in behavioral inhibition in adults with ADHD. We further suggest that there is more evidence for a critical role of deficient inhibitory control in adults than in children with ADHD.


2018 ◽  
Vol 30 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Johanna Wagner ◽  
Jan R. Wessel ◽  
Ayda Ghahremani ◽  
Adam R. Aron

Many studies have examined the rapid stopping of action as a proxy of human self-control. Several methods have shown that a critical focus for stopping is the right inferior frontal cortex. Moreover, electrocorticography studies have shown beta band power increases in the right inferior frontal cortex and in the BG for successful versus failed stop trials, before the time of stopping elapses, perhaps underpinning a prefrontal–BG network for inhibitory control. Here, we tested whether the same signature might be visible in scalp electroencephalography (EEG)—which would open important avenues for using this signature in studies of the recruitment and timing of prefrontal inhibitory control. We used independent component analysis and time–frequency approaches to analyze EEG from three different cohorts of healthy young volunteers (48 participants in total) performing versions of the standard stop signal task. We identified a spectral power increase in the band 13–20 Hz that occurs after the stop signal, but before the time of stopping elapses, with a right frontal topography in the EEG. This right frontal beta band increase was significantly larger for successful compared with failed stops in two of the three studies. We also tested the hypothesis that unexpected events recruit the same frontal system for stopping. Indeed, we show that the stopping-related right-lateralized frontal beta signature was also active after unexpected events (and we accordingly provide data and scripts for the method). These results validate a right frontal beta signature in the EEG as a temporally precise and functionally significant neural marker of the response inhibition process.


2016 ◽  
Vol 28 (1) ◽  
pp. 177-186 ◽  
Author(s):  
Ying Cai ◽  
Siyao Li ◽  
Jing Liu ◽  
Dawei Li ◽  
Zifang Feng ◽  
...  

Mounting evidence suggests that response inhibition involves both proactive and reactive inhibitory control, yet its underlying neural mechanisms remain elusive. In particular, the roles of the right inferior frontal gyrus (IFG) and inferior parietal lobe (IPL) in proactive and reactive inhibitory control are still under debate. This study aimed at examining the causal role of the right IFG and IPL in proactive and reactive inhibitory control, using transcranial direct current stimulation (tDCS) and the stop signal task. Twenty-two participants completed three sessions of the stop signal task, under anodal tDCS in the right IFG, the right IPL, or the primary visual cortex (VC; 1.5 mA for 15 min), respectively. The VC stimulation served as the active control condition. The tDCS effect for each condition was calculated as the difference between pre- and post-tDCS performance. Proactive control was indexed by the RT increase for go trials (or preparatory cost), and reactive control by the stop signal RT. Compared to the VC stimulation, anodal stimulation of the right IFG, but not that of the IPL, facilitated both proactive and reactive control. However, the facilitation of reactive control was not mediated by the facilitation of proactive control. Furthermore, tDCS did not affect the intraindividual variability in go RT. These results suggest a causal role of the right IFG, but not the right IPL, in both reactive and proactive inhibitory control.


2020 ◽  
Author(s):  
Rune Boen ◽  
Liisa Raud ◽  
Rene J. Huster

AbstractThe right inferior frontal gyrus (rIFG) has most strongly, although not exclusively, been associated with response inhibition, not least based on covariations of behavioral performance measures and local grey matter characteristics. However, the white matter microstructure of the rIFG as well as its connectivity has been less in focus, especially when it comes to the consideration of potential subdivisions within this area. The present study reconstructed the structural connections of the three main subregions of the rIFG (i.e. pars opercularis, pars triangularis and pars orbitalis) using diffusion tensor imaging, and further assessed their associations with behavioral measures of inhibitory control. The results revealed a marked heterogeneity of the three subregions with respect to the pattern and extent of their connections, with the pars orbitalis showing the most widespread inter-regional connectivity, while the pars opercularis showed the least amount of connections. When relating behavioral performance measures of a stop signal task to brain structure, the data indicated a differential association of dorsal and ventral opercular connectivity with the go reaction time and the stopping accuracy, respectively.


2019 ◽  
Author(s):  
Zachary Hawes ◽  
H Moriah Sokolowski ◽  
Chuka Bosah Ononye ◽  
Daniel Ansari

Where and under what conditions do spatial and numerical skills converge and diverge in the brain? To address this question, we conducted a meta-analysis of brain regions associated with basic symbolic number processing, arithmetic, and mental rotation. We used Activation Likelihood Estimation (ALE) to construct quantitative meta-analytic maps synthesizing results from 86 neuroimaging papers (~ 30 studies/cognitive process). All three cognitive processes were found to activate bilateral parietal regions in and around the intraparietal sulcus (IPS); a finding consistent with shared processing accounts. Numerical and arithmetic processing were associated with overlap in the left angular gyrus, whereas mental rotation and arithmetic both showed activity in the middle frontal gyri. These patterns suggest regions of cortex potentially more specialized for symbolic number representation and domain-general mental manipulation, respectively. Additionally, arithmetic was associated with unique activity throughout the fronto-parietal network and mental rotation was associated with unique activity in the right superior parietal lobe. Overall, these results provide new insights into the intersection of numerical and spatial thought in the human brain.


2020 ◽  
Vol 27 (3) ◽  
pp. 284-301
Author(s):  
Salvatore Fabio Nicolosi ◽  
Lisette Mustert

In a resolution adopted on 1 February 2018, the European Committee of the Regions noted that a legislative proposal of the European Commission concerning a Regulation that changes the rules governing the EU regional funds for 2014-2020 did not comply with the principle of subsidiarity. Accordingly, the Committee considered challenging the legislative proposal before the Court of Justice if the proposal was formally agreed upon. Although at a later stage the European Commission decided to take into account the Committee’s argument and amended the proposal accordingly, such a context offers the chance to investigate more in detail the role of the Committee of the Regions in the legislative process of the EU and, more in particular, its role as a watchdog of the principle of subsidiarity. This paper aims to shed light on a rather neglected aspect of the EU constitutional practice, such as the potential of the Committee of the Regions to contribute to the legislative process, and answer the question of whether this Committee is the right body to guarantee compliance with the principle of subsidiarity.


Author(s):  
Raffaella Gualandi ◽  
Anna De Benedictis

Abstract In this letter to the Editor, we shed light on the rapid changes the Covid-19 virus has generated in hospital management. Recent experiences in the field aim to reorganizing hospital processes and policies. In this new scenario, new patient needs emerge, and a change in the hospital model of care should include them.


Sign in / Sign up

Export Citation Format

Share Document