Associations between P3a and P3b amplitudes and cognition in antipsychotic-naïve first-episode schizophrenia patients

2018 ◽  
Vol 49 (5) ◽  
pp. 868-875 ◽  
Author(s):  
Caitlyn Kruiper ◽  
Birgitte Fagerlund ◽  
Mette Ø. Nielsen ◽  
Signe Düring ◽  
Maria H. Jensen ◽  
...  

AbstractBackgroundCognitive deficits are already present in early stages of schizophrenia. P3a and P3b event-related potentials (ERPs) are believed to underlie the processes of attention and working memory (WM), yet limited research has been performed on the associations between these parameters. Therefore, we explored possible associations between P3a/b amplitudes and cognition in a large cohort of antipsychotic-naïve, first-episode schizophrenia (AN-FES) patients and healthy controls (HC).MethodsSeventy-three AN-FES patients and 93 age- and gender-matched HC were assessed for their P3a/b amplitude with an auditory oddball paradigm. In addition, subjects performed several subtests from the Cambridge Neuropsychological Test Automated Battery (CANTAB).ResultsAN-FES patients had significantly reduced P3a/b amplitudes, as well as significantly lower scores on all cognitive tests compared with HC. Total group correlations revealed positive associations between P3b amplitude and WM and sustained attention and negative associations with all reaction time measures. These associations appeared mainly driven by AN-FES patients, where we found a similar pattern. No significant associations were found between P3b amplitude and cognitive measures in our HC. P3a amplitude did not correlate significantly with any cognitive measures in either group, nor when combined.ConclusionsOur results provide further evidence for P3a/b amplitude deficits and cognitive deficits in AN-FES patients, which are neither due to antipsychotics nor to disease progress. Furthermore, our data showed significant, yet weak associations between P3b and cognition. Therefore, our data do not supply evidence for deficient P3a/b amplitudes as direct underlying factors for cognitive deficits in schizophrenia.

2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
C. Silveira ◽  
F. Santos ◽  
F. Barbosa ◽  
A. Pedro ◽  
A. Palha ◽  
...  

Background/Objective:Despite the well established genetic basis of schizophrenia, the relationship between genes and the disorder itself is still elusive. Individual endophenotypes, which reduce the complexity of genetic analyses, allow statistical approaches with quantitative trait methodologies. P200 abnormalities of event-related potentials have been reported in schizophrenia with conflicting results. The present study aims to characterize the P200 in first-episode patients and to compare it with that of first-degree relatives and controls.Methods:ERPs were recorded at 19 sites with an auditory oddball for 21 first-episode patients with schizophrenia (mean age=25.14; SD=6.20), 41 of their first degree relatives (mean age=47.65; SD=15.53) and 19 healthy controls (mean age=26.32; SD=7.16). Potentials were averaged for frequent stimuli and P200 amplitude and latency measures were obtained.Results:Analysis of midline electrodes revealed significant group effects for P200 peak amplitudes (F(2, 78)=3.315, p=.042), but not for peak latencies. Post-hoc analyses revealed that patients with schizophrenia present significantly lower P200 amplitudes (M=2.466; SD=1.564) than controls (M=5.037; SD=2.500) at Pz (T(38)=3.851, p=.003). No other significant differences were found.Conclusion:The results obtained do not straight-forwardly support the P200 peak amplitude nor peak latency as an endophenotype of schizophrenia. However, the trends of our results may suggest that the P200 amplitudes of relatives may present intermediate values between healthy controls (with higher amplitudes) and patients (with lower amplitudes). Further statistical analyses will be required in order to disentangle the effects of possible confounding variables.


2021 ◽  
pp. 1-10
Author(s):  
Xiaojing Li ◽  
Wei Deng ◽  
Rui Xue ◽  
Qiang Wang ◽  
Hongyan Ren ◽  
...  

Abstract Background Deficits in event-related potential (ERP) including duration mismatch negativity (MMN) and P3a have been demonstrated widely in chronic schizophrenia (SZ) but inconsistent findings were reported in first-episode patients. Psychotropic medications and diagnosis might contribute to different findings on MMN/P3a ERP in first-episode patients. The present study examined MMN and P3a in first episode drug naïve SZ and bipolar disorder (BPD) patients and explored the relationships among ERPs, neurocognition and global functioning. Methods Twenty SZ, 24 BPD and 49 age and sex-matched healthy controls were enrolled in this study. Data of clinical symptoms [Positive and Negative Symptoms Scale (PANSS), Young Manic Rating Scale (YMRS), Hamilton Depression Rating Scale (HAMD)], neurocognition [Wechsler Adult Intelligence Scale (WAIS), Cattell's Culture Fair Intelligence Test (CCFT), Delay Matching to Sample (DMS), Rapid Visual Information Processing (RVP)], and functioning [Functioning Assessment Short Test (FAST)] were collected. P3a and MMN were elicited using a passive auditory oddball paradigm. Results Significant MMN and P3a deficits and impaired neurocognition were found in both SZ and BPD patients. In SZ, MMN was significantly correlated with FAST (r = 0.48) and CCFT (r = −0.31). In BPD, MMN was significantly correlated with DMS (r = −0.54). For P3a, RVP and FAST scores were significant predictors in SZ, whereas RVP, WAIS and FAST were significant predictors in BPD. Conclusions The present study found deficits in MMN, P3a, neurocognition in drug naïve SZ and BPD patients. These deficits appeared to link with levels of higher-order cognition and functioning.


Author(s):  
Shashikanta Tarai

This chapter discusses neurocognitive mechanisms in terms of latency and amplitudes of EEG signals in depression that are presented in the form of event-related potentials (ERPs). Reviewing the available literature on depression, this chapter classifies early P100, ERN, N100, N170, P200, N200, and late P300 ERP components in frontal, mid-frontal, temporal, and parietal lobes. Using auditory oddball paradigm, most of the studies testing depressive patients have found robust P300 amplitude reduction. Proposing EEG methods and summarizing behavioral, neuroanatomical, and electrophysiological findings, this chapter discusses how the different tasks, paradigms, and stimuli contribute to the cohesiveness of neural signatures and psychobiological markers for identifying the patients with depression. Existing research gaps are directed to conduct ERP studies following go/no-go, flanker interference, and Stroop tasks on global and local attentional stimuli associated with happy and sad emotions to examine anterior cingulate cortex (ACC) dysfunction in depression.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1
Author(s):  
C. Silveira ◽  
F. Santos ◽  
F. Barbosa ◽  
A. Pedro ◽  
A. Palha ◽  
...  

Background/Objective:Despite the well established genetic basis of schizophrenia, the relationship between genes and the disorder itself is still elusive. Individual endophenotypes, which reduce the complexity of genetic analyses, allow statistical approaches with quantitative trait methodologies. P200 abnormalities of event-related potentials have been reported in schizophrenia with conflicting results. the present study aims to characterize the P200 in first-episode patients and to compare it with that of first-degree relatives and controls.Methods:ERPs were recorded at 19 sites with an auditory oddball for 21 first-episode patients with schizophrenia (mean age=25.14; SD=6.20), 41 of their first degree relatives (mean age=47.65; SD=15.53) and 19 healthy controls (mean age=26.32; SD=7.16). Potentials were averaged for frequent stimuli and P200 amplitude and latency measures were obtained.Results:Analysis of midline electrodes revealed significant group effects for P200 peak amplitudes (F(2, 78)=3.315, p=.042), but not for peak latencies. Post-hoc analyses revealed that patients with schizophrenia present significantly lower P200 amplitudes (M=2.466; SD=1.564) than controls (M=5.037; SD=2.500) at Pz (T(38)=3.851, p=.003). No other significant differences were found.Conclusion:The results obtained do not straight-forwardly support the P200 peak amplitude nor peak latency as an endophenotype of schizophrenia. However, the trends of our results may suggest that the P200 amplitudes of relatives may present intermediate values between healthy controls (with higher amplitudes) and patients (with lower amplitudes). Further statistical analyses will be required in order to disentangle the effects of possible confounding variables.


2004 ◽  
Vol 51 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Masato Higashima ◽  
Tatsuya Nagasawa ◽  
Yasuhiro Kawasaki ◽  
Takashi Oka ◽  
Naoto Sakai ◽  
...  

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 182
Author(s):  
Kestutis Gurevicius ◽  
Arto Lipponen ◽  
Rimante Minkeviciene ◽  
Heikki Tanila

An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.


2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Chengqing Yang ◽  
Tianhong Zhang ◽  
Zezhi Li ◽  
Anisha Heeramun-Aubeeluck ◽  
Na Liu ◽  
...  

2005 ◽  
Vol 137 (1-2) ◽  
pp. 49-59 ◽  
Author(s):  
Aleš Kogoj ◽  
Zvezdan Pirtošek ◽  
Martina Tomori ◽  
David B. Vodušek

Sign in / Sign up

Export Citation Format

Share Document