Abnormal dynamic functional network connectivity in unmedicated bipolar and major depressive disorders based on the triple-network model

2019 ◽  
Vol 50 (3) ◽  
pp. 465-474 ◽  
Author(s):  
Junjing Wang ◽  
Ying Wang ◽  
Huiyuan Huang ◽  
Yanbin Jia ◽  
Senning Zheng ◽  
...  

AbstractBackgroundPrevious studies have analyzed brain functional connectivity to reveal the neural physiopathology of bipolar disorder (BD) and major depressive disorder (MDD) based on the triple-network model [involving the salience network, default mode network (DMN), and central executive network (CEN)]. However, most studies assumed that the brain intrinsic fluctuations throughout the entire scan are static. Thus, we aimed to reveal the dynamic functional network connectivity (dFNC) in the triple networks of BD and MDD.MethodsWe collected resting state fMRI data from 51 unmedicated depressed BD II patients, 51 unmedicated depressed MDD patients, and 52 healthy controls. We analyzed the dFNC by using an independent component analysis, sliding window correlation and k-means clustering, and used the parameters of dFNC state properties and dFNC variability for group comparisons.ResultsThe dFNC within the triple networks could be clustered into four configuration states, three of them showing dense connections (States 1, 2, and 4) and the other one showing sparse connections (State 3). Both BD and MDD patients spent more time in State 3 and showed decreased dFNC variability between posterior DMN and right CEN (rCEN) compared with controls. The MDD patients showed specific decreased dFNC variability between anterior DMN and rCEN compared with controls.ConclusionsThis study revealed more common but less specific dFNC alterations within the triple networks in unmedicated depressed BD II and MDD patients, which indicated their decreased information processing and communication ability and may help us to understand their abnormal affective and cognitive functions clinically.

2019 ◽  
Vol 24 ◽  
pp. 101970 ◽  
Author(s):  
Flor A. Espinoza ◽  
Nathaniel E. Anderson ◽  
Victor M. Vergara ◽  
Carla L. Harenski ◽  
Jean Decety ◽  
...  

2020 ◽  
Author(s):  
Anna K. Bonkhoff ◽  
Markus D. Schirmer ◽  
Martin Bretzner ◽  
Mark Etherton ◽  
Kathleen Donahue ◽  
...  

AbstractBackground and PurposeTo explore the whole-brain dynamic functional network connectivity patterns in acute ischemic stroke (AIS) patients and their relation to stroke severity in the short and long term.MethodsWe investigated large-scale dynamic functional network connectivity of 41 AIS patients two to five days after symptom onset. Re-occurring dynamic connectivity configurations were obtained using a sliding window approach and k-means clustering. We evaluated differences in dynamic patterns between three NIHSS-stroke severity defined groups (mildly, moderately, and severely affected patients). Furthermore, we established correlation analyses between dynamic connectivity estimates and AIS severity as well as neurological recovery within the first 90 days after stroke (DNIHSS). Finally, we built Bayesian hierarchical models to predict acute ischemic stroke severity and examine the inter-relation of dynamic connectivity and clinical measures, with an emphasis on white matter hyperintensity lesion load.ResultsWe identified three distinct dynamic connectivity configurations in the early post-acute stroke phase. More severely affected patients (NIHSS 10–21) spent significantly more time in a highly segregated dynamic connectivity configuration that was characterized by particularly strong connectivity (three-level ANOVA: p<0.05, post hoc t-tests: p<0.05, FDR-corrected for multiple comparisons). Recovery, as indexed by the realized change of the NIHSS over time, was significantly linked to the acute dynamic connectivity between bilateral intraparietal lobule and left angular gyrus (Pearson’s r = –0.68, p<0.05, FDR-corrected). Increasing dwell times, particularly those in a very segregated connectivity configuration, predicted higher acute stroke severity in our Bayesian modelling framework.ConclusionsOur findings demonstrate transiently increased segregation between multiple functional domains in case of severe AIS. Dynamic connectivity involving default mode network components significantly correlated with recovery in the first three months post-stroke.


Sign in / Sign up

Export Citation Format

Share Document