scholarly journals Prion propagation and molecular chaperones

1999 ◽  
Vol 32 (4) ◽  
pp. 309-370 ◽  
Author(s):  
Ralph Zahn

1. Introduction 3102. Protein-only hypothesis 3123. The scrapie prion protein PrPSc3133.1 Purification of PrP 27–30 3133.2 Proteinase K resistance 3143.3 Scrapie-associated fibrils 3143.4 Smallest infectious unit 3163.5 Conformational properties 3163.6 Dissociation and stability 3194. The cellular prion protein PrPC3214.1 Prnp expression 3214.2 Biosynthetic pathway 3224.3 NMR structures 3244.4 Copper binding 3265. Post-translational PrP conversion 3275.1 Conformational isoforms 3275.2 Location of propagation 3295.3 Minimal PrP sequence 3305.4 Prion species barrier 3315.5 Prion strains 3326. Effect of familial TSE mutations 3336.1 Thermodynamic stability of PrPC 3346.2 De novo synthesis of PrPSc 3356.3 Transmembrane PrP forms 3377. Physical properties of synthetic PrP 3377.1 Amyloidogenic peptides 3377.2 Folding intermediates 3398. Hypothetical protein X 3408.1 Two species-specific epitopes 3408.2 Mapping the protein X epitope 3419. Chaperone-mediated PrP conversion 3439.1 Hsp60 and Hsp10 chaperonins 3439.2 GroEL promoted PrP-res formation 3459.3 Membrane-associated chaperonins 3459.4 Preference of GroEL for positive charges 3479.5 Potential GroEL/Hsp60 epitopes on PrP 3479.6 Conformations of chaperonin-bound PrP 3499.7 Conserved Hsp60 substrate binding sites 3499.8 Requirement of ATP-hydrolysis 3519.9 Hsp60-mediated prion propagation 35410. Template-assisted annealing model 35511. Acknowledgments 35712. References 357Although the central paradigm of protein folding (Anfinsen, 1973), that the unique three-dimensional structure of a protein is encoded in its amino acid sequence, is well established, its generality has been questioned due to two recent developments in molecular biology, the ‘prion’ and ‘molecular chaperone’. Biochemical characterization of infectious scrapie material causing central nervous system (CNS) degeneration indicates that the necessary component for disease propagation is proteinaceous (Prusiner, 1982), as first outlined by Griffith (1967) in general terms, and involves a conversion from a cellular prion protein, denoted PrPC, into a toxic scrapie form, PrPSc, which is facilitated by PrPSc acting as a template for PrPC to form new PrPSc molecules (Prusiner, 1987). The ‘protein-only’ hypothesis implies that the same polypeptide sequence, in the absence of any post-translational modifications, can adopt two considerably different stable protein conformations (Fig. 1). Thus, in the case of prions it is possible, although not proven, that they violate the central paradigm of protein folding. There is some indirect evidence that another factor, provisionally named ‘protein X’, might be involved in the conformational conversion process (Prusiner et al. 1998), which includes a dramatic change from α-helical into β-sheet secondary structure (Fig. 1). This factor has not been identified yet, but it has been proposed that protein X may act as a molecular chaperone. The idea that molecular chaperones play a critical role in the generation of PrPSc is appealing also from a theoretical point of view, because PrPSc formation involves changes in protein folding and possibly intermolecular aggregation (Fig. 1), processes in which chaperones are known to participate (Musgrove & Ellis, 1986). The discovery and functional analysis of more than a dozen molecular chaperones made it clear that these proteins do not complement folding information that is not already contained in the genetic code (Ellis et al. 1989); rather they facilitate the folding and assembly of proteins by preventing misfolding and refolding misfolded proteins (Hartl, 1996). Whether a molecular chaperone or another type of macromolecule is identified as the conversion factor, therefore, the molecular chaperone concept is likely to contribute to the understanding of the molecular nature of PrPC to PrPSc conversion.In this review I consider the prion concept from the view of a structural biologist whose main interest focuses on spontaneous and chaperone-mediated conformational changes in proteins.

1997 ◽  
Vol 94 (19) ◽  
pp. 10069-10074 ◽  
Author(s):  
K. Kaneko ◽  
L. Zulianello ◽  
M. Scott ◽  
C. M. Cooper ◽  
A. C. Wallace ◽  
...  

2020 ◽  
Vol 155 (5) ◽  
pp. 577-591 ◽  
Author(s):  
Elena De Cecco ◽  
Luigi Celauro ◽  
Silvia Vanni ◽  
Micaela Grandolfo ◽  
Edoardo Bistaffa ◽  
...  

2020 ◽  
Author(s):  
Elena De Cecco ◽  
Luigi Celauro ◽  
Silvia Vanni ◽  
Micaela Grandolfo ◽  
Adriano Aguzzi ◽  
...  

AbstractTauopathies are prevalent, invariably fatal brain diseases for which no cure is available. Tauopathies progressively affect the brain through cell-to-cell transfer of tau protein amyloids, yet the spreading mechanisms are unknown. Here we show that the cellular prion protein (PrPC) facilitates the uptake of tau aggregates by cultured cells, possibly by acting as an endocytic receptor. In mouse neuroblastoma cells, we found that tau amyloids bind to PrPC; internalization of tau fibrils was reduced in isogenic cells devoid of the gene encoding PrPC. Antibodies against N-proximal epitopes of PrPC impaired the binding of tau amyloids and decreased their uptake. Surprisingly, exposure of chronically prion-infected cells to tau amyloids reduced the accumulation of aggregated prion protein; this effect lasted for more than 72 hours after amyloid removal. These results point to bidirectional interactions between the two proteins: whilst PrPC mediates the entrance of tau fibrils in cells, PrPSc buildup is greatly reduced in their presence, possibly because of an impairment in the prion conversion process.


2006 ◽  
Vol 81 (6) ◽  
pp. 2831-2837 ◽  
Author(s):  
Eric M. Norstrom ◽  
Mark F. Ciaccio ◽  
Benjamin Rassbach ◽  
Robert Wollmann ◽  
James A. Mastrianni

ABSTRACT Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrPSc), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrPC exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrPC is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp +/+ ) mice with PrP-ablated mice (TgPrnp o/o) to generate Tg1D4(Prnp o/o) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp +/+ ) and Tg1D4(Prnp o/o) mice, suggesting that cyPrP and PrPC function independently in the disease state. Additionally, Tg1D4(Prnp o/o) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrPSc. We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrPC and the generation of typical prion disease.


2004 ◽  
Vol 85 (11) ◽  
pp. 3473-3482 ◽  
Author(s):  
Chan-Lan Kim ◽  
Ayako Karino ◽  
Naotaka Ishiguro ◽  
Morikazu Shinagawa ◽  
Motoyoshi Sato ◽  
...  

The C-terminal portion of the prion protein (PrP), corresponding to a protease-resistant core fragment of the abnormal isoform of the prion protein (PrPSc), is essential for prion propagation. Antibodies to the C-terminal portion of PrP are known to inhibit PrPSc accumulation in cells persistently infected with prions. Here it was shown that, in addition to monoclonal antibodies (mAbs) to the C-terminal portion of PrP, a mAb recognizing the octapeptide repeat region in the N-terminal part of PrP that is dispensable for PrPSc formation reduced PrPSc accumulation in cells persistently infected with prions. The 50 % effective dose was as low as ∼1 nM, and, regardless of their epitope specificity, the inhibitory mAbs shared the ability to bind cellular prion protein (PrPC) expressed on the cell surface. Flow cytometric analysis revealed that mAbs that bound to the cell surface during cell culture were not internalized even after their withdrawal from the growth medium. Retention of the mAb–PrPC complex on the cell surface was also confirmed by the fact that internalization was enhanced by treatment of cells with dextran sulfate. These results suggested that anti-PrP mAb antagonizes PrPSc formation by interfering with the regular PrPC degradation pathway.


2015 ◽  
Vol 90 (3) ◽  
pp. 1638-1646 ◽  
Author(s):  
Manal Khalifé ◽  
Fabienne Reine ◽  
Sophie Paquet-Fifield ◽  
Johan Castille ◽  
Laetitia Herzog ◽  
...  

ABSTRACTMammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, bothin vitroandin vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease.IMPORTANCERecent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.


2020 ◽  
Vol 117 (38) ◽  
pp. 23815-23822 ◽  
Author(s):  
Iryna Benilova ◽  
Madeleine Reilly ◽  
Cassandra Terry ◽  
Adam Wenborn ◽  
Christian Schmidt ◽  
...  

Prions are infectious agents which cause rapidly lethal neurodegenerative diseases in humans and animals following long, clinically silent incubation periods. They are composed of multichain assemblies of misfolded cellular prion protein. While it has long been assumed that prions are themselves neurotoxic, recent development of methods to obtain exceptionally pure prions from mouse brain with maintained strain characteristics, and in which defined structures—paired rod-like double helical fibers—can be definitively correlated with infectivity, allowed a direct test of this assertion. Here we report that while brain homogenates from symptomatic prion-infected mice are highly toxic to cultured neurons, exceptionally pure intact high-titer infectious prions are not directly neurotoxic. We further show that treatment of brain homogenates from prion-infected mice with sodium lauroylsarcosine destroys toxicity without diminishing infectivity. This is consistent with models in which prion propagation and toxicity can be mechanistically uncoupled.


1992 ◽  
Vol 118 (3) ◽  
pp. 541-549 ◽  
Author(s):  
P S Kim ◽  
D Bole ◽  
P Arvan

Because of its unusual length, nascent thyroglobulin (Tg) requires a long time after translocation into the endoplasmic reticulum (ER) to assume its mature tertiary structure. Thus, Tg is an ideal molecule for the study of protein folding and export from the ER, and is an excellent potential substrate for molecular chaperones. During the first 15 min after biosynthesis, Tg is found in transient aggregates with and without interchain disulfide bonds, which precede the formation of free monomers (and ultimately dimers) within the ER. By immunoprecipitation, newly synthesized Tg was associated with the binding protein (BiP); association was maximal at the earliest chase times. Much of the Tg released from BiP by the addition of Mg-ATP was found in aggregates containing interchain disulfide bonds; other BiP-associated Tg represented non-covalent aggregates and unfolded free monomers. Importantly, the immediate precursor to Tg dimer was a compact monomer which did not associate with BiP. The average stoichiometry of BiP/Tg interaction involved nearly 10 BiP molecules per Tg molecule. Cycloheximide was used to reduced the ER concentration of Tg relative to chaperones, with subsequent removal of the drug in order to rapidly restore Tg synthesis. After this treatment, nascent Tg aggregates were no longer detectable. The data suggest a model of folding of exportable proteins in which nascent polypeptides immediately upon translocation into the ER interact with BiP. Early interaction with BiP may help in presenting nascent polypeptides to other helper molecules that catalyze folding, thereby preventing aggregation or driving aggregate dissolution in the ER.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1649
Author(s):  
Aleksandra A. Mamchur ◽  
Andrei V. Moiseenko ◽  
Irina S. Panina ◽  
Igor A. Yaroshevich ◽  
Sofia S. Kudryavtseva ◽  
...  

The molecular chaperone GroEL is designed to promote protein folding and prevent aggregation. However, the interaction between GroEL and the prion protein, PrPC, could lead to pathogenic transformation of the latter to the aggregation-prone PrPSc form. Here, the molecular basis of the interactions in the GroEL–PrP complex is studied with cryo-EM and molecular dynamics approaches. The obtained cryo-EM structure shows PrP to be bound to several subunits of GroEL at the level of their apical domains. According to MD simulations, the disordered N-domain of PrP forms much more intermolecular contacts with GroEL. Upon binding to the GroEL, the N-domain of PrP begins to form short helices, while the C-domain of PrP exhibits a tendency to unfold its α2-helix. In the absence of the nucleotides in the system, these processes are manifested at the hundred nanoseconds to microsecond timescale.


Sign in / Sign up

Export Citation Format

Share Document